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The breakout noise from an air-conditioning duct is of immense concern in order to maintain a 

sound environment at home, office spaces, hospitals, etc. The challenge lies in correctly 

estimating the breakout noise by knowing the breakout sound transmission loss from the air duct. 

The ASHRAE Handbook: HVAC Applications (ASHRAE, 2011) currently lists some of 

theoretical  transmission loss values for limited duct dimensions and gages (duct-wall thickness) 

at the octave band frequencies. Statistical Energy Analysis (SEA) is promising to predict the 

sound transmission loss for breakout noise for any given air duct configuration, particularly at 

high frequency. Though there are deterministic approaches such as finite element method (FEM) 

and boundary element method (BEM), they are unable to yield results efficiently for high 

frequency, while they also demand long computational time and memory. SEA on the contrary 

saves the computational effort and thus computational time. In this study, theoretical 

transmission loss of random duct configuration is selected from ASHRAE Handbook: HVAC 

Applications (ASHRAE, 2011) to evaluate the SEA method for correctly predicting the breakout 

sound transmission noise. All the applicable parameters for implementing SEA on a duct are 

discussed and the method is then simulated. The predicted results are then compared with the 

theoretical results (ASHRAE, 2011). Initially, there are some discrepancies between the 
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predicted results by SEA and the theoretical results in transmission loss observed at higher 

frequencies. Further investigation leads to a formulation of a factor that is applied to the 

conventional SEA approach. The predicted results from the new formulation show a close 

agreement with the existing theoretical results and are mostly within 3 dB difference. The SEA 

predictions are also compared with the experimental data (Cummings 1983a) to establish SEA’s 

validity. The SEA predicted results are also found to be close with the experimental results for 

the all the duct configurations and maintain agreement mostly within 3 dB.   

 



www.manaraa.com

iv 

 

Copyright 2013, Himanshu S. Malushte. 

  



www.manaraa.com

v 

 

Acknowledgements 
 

 

This research has been a unique experience. It compelled me to step out of the familiar science of 

investigating a problem by the conventional methods in order to suggest an alternate technique to 

address the same problem more effectively. This research at times has been mercurial in terms of 

the behavior of the problem associated to yield any logical results. This challenged me even 

further to thoroughly investigate each and every parameter associated with the study and deduce 

a compatible approach to address the problem. In the process I would like to thank my advisor 

Dr. Siu-Kit Lau who has been aplomb throughout my study especially in times of inconclusive 

study output and thereby directing me to a more practical approach. I am grateful to the 

university library resource database that gave me an access to the numerous scientific research 

articles published over the time in my related research field.  

Finally, I may not be able to close my acknowledgements without making a mention of my 

fellow graduate student Carl Hart for his valuable feedback on my research from time to time 

and for ceaselessly sharing his expertise in the field of structural acoustics. I would also like to 

take an opportunity to thank my examining committee members Dr. Lily Wang and Dr. Yuebin 

Yu for accepting my invitation to be on my committee on such a short notice and giving their 

valuable advice on this research. 

  



www.manaraa.com

vi 

 

Table of Contents 

 

Title Page ......................................................................................................................................... i 

Abstract ........................................................................................................................................... ii 

Copyright. ...................................................................................................................................... iv 

Acknowledgements ......................................................................................................................... v 

Table of Contents ........................................................................................................................... vi 

List of Figures ................................................................................................................................. x 

List of Tables ................................................................................................................................ xii 

List of Symbols ............................................................................................................................ xiv 

Chapter 1: Introduction ................................................................................................................... 1 

1.1  Analysis of Background of Statistical Energy ..................................................................... 1 

1.2  Approach of Statistical Energy Analysis ............................................................................. 2 

1.3  Important Parameters in Statistical Energy Analysis ........................................................... 3 

1.4  Some Limitations and Assumptions in Statistical Energy Analysis .................................... 4 

1.5  Example of Simple Statistical Energy Analysis ................................................................... 5 

1.6  The Need to Account for the HVAC Duct Noise. ................................................................ 8 

1.7  Breakout Noise in Air Duct .................................................................................................. 8 

1.8  The Need to Apply Statistical Energy Analysis on Air Duct. ............................................ 10 



www.manaraa.com

vii 

 

1.9  The Intended Benefits of the SEA Application .................................................................. 11 

1.10  Summary .......................................................................................................................... 11 

Chapter 2: Literature Review ........................................................................................................ 13 

2.1  Study of Sound Transmitted Through Duct Walls ............................................................. 13 

2.2  Study on Statistical Energy Analysis ................................................................................. 15 

2.3  SEA in Noise Control Applications ................................................................................... 19 

2.4  Study on Some Essential Parameters of SEA .................................................................... 21 

2.5  Application of SEA in Other Fields. .................................................................................. 24 

2.6  ASHRAE References ......................................................................................................... 24 

2.7  Summary ............................................................................................................................ 25 

Chapter 3: Methodology ............................................................................................................... 27 

3.1  Duct Model ......................................................................................................................... 27 

3.2  Critical Frequency and the First Resonant Frequency of the Duct Wall Panels ................ 31 

3.3  Internal Loss Factor of the Enclosed Air Volume Inside the Duct .................................... 32 

3.4  Dissipation Loss Factors of the Duct Wall Panels (or called Plates) ................................. 32 

3.5  Radiation Coefficients for the Duct Walls Panels (or called Plates) .................................. 33 

3.6  Coupling Loss Factor ......................................................................................................... 34 

3.7  Modal Density .................................................................................................................... 36 

3.8  Consistency Relationship ................................................................................................... 37 

3.9  Evaluating the Total Loss Factors ...................................................................................... 38 



www.manaraa.com

viii 

 

3.10  Non-Resonant Coupling Loss Factor ............................................................................... 38 

3.11  Evaluating the Sound Power Levels ................................................................................. 39 

3.12  Calculating the Transmission Loss through duct walls .................................................... 41 

3.13  Calculating the Cutoff Frequency .................................................................................... 43 

3.14  Summary .......................................................................................................................... 44 

Chapter 4: Results and Analysis ................................................................................................... 46 

4.1  Initially Predicted Results by SEA ..................................................................................... 46 

4.2  Calculating the Transmission Loss using Cummings Equations (Cummings, 1985) ........ 48 

4.3  Evaluating  the Correction Factor ...................................................................................... 51 

4.4  Improvement in Prediction of Transmission Loss (TL) using Equation 4.6. ..................... 53 

4.5  Contributions of Resonant and Non-Resonant Responses to the TL of the Duct Walls .... 54 

4.6  Sound Power Level Transmitted Out of the Air Duct by Resonant and Non-Resonant 

Responses. ......................................................................................................................... 56 

4.7  Resonant and Non-Resonant Responses Near to and Above Critical Frequency .............. 58 

4.8  Predicted TL values for duct 0.610m x 0.610m x 6.1m ..................................................... 61 

4.9  Predicted TL values for duct 0.610m x 1.22m x 6.1m ....................................................... 62 

4.10  Predicted TL values for duct 1.22m x 2.44 m x 6.1m ...................................................... 64 

4.11  Predicted TL values for all other standard dimensions as listed in ASHRAE ................. 65 

4.12  Predicted TL Values Compared with the Experimental Data from Cummings (1983a) 

report ................................................................................................................................. 67 



www.manaraa.com

ix 

 

4.13  Summary .......................................................................................................................... 71 

Chapter 5: Conclusions ................................................................................................................. 72 

5.1  SEA’s Applicability ........................................................................................................... 72 

5.2  Advantages of using Statistical Energy Analysis (SEA) ................................................... 73 

5.3  Limitations of Statistical Energy Analysis (SEA) .............................................................. 73 

5.4  Future Research .................................................................................................................. 74 

5.5  Summary ............................................................................................................................ 74 

References ..................................................................................................................................... 76 

Appendix A – MATLAB .............................................................................................................. 83 

 

  



www.manaraa.com

x 

 

List of Figures 
  

Chapter 1: Introduction  

Figure 1.1 - Simplistic SEA model of two subsystems in interaction. ........................................... 6 

Figure 1.2 - Common cross sections of an air duct (Cummings, 2001). ........................................ 9 

 

Chapter 2 : Methodology 

Figure 3.1 - Simple geometry of the duct model. ......................................................................... 28 

Figure 3.2 - Schematic representation of exchange of power within subsystems. ....................... 29 

Figure 3.3 - Waveguide with dimension Lx and Ly (Kinsler, 2000)………………………………….43 

 

 

Chapter 4 : Results and Analysis 

Figure 4.1 - Transmission Loss (TL) predicted by SEA and theoretical TL by ASHRAE (2011) 

for duct 0.305 m x 0.610 m x 6.1 m. ........................................................................ 47 

Figure 4.2 - Transmission loss with plane acoustic mode (Equation 4.1) and higher order mode 

(Equation 4.2) for duct 0.305 m x 0.610 m x 6.1 m. ............................................... 50 

Figure 4.3 - Predicted TL with correction factor from Equation 4.5 above the transition 

frequency and the theoretical TL for duct 0.305 m x 0.610 m x 6.1 m. .................. 53 

Figure 4.4 - Predicted resonant TL and non-resonant TL for duct 0.305 m x 0.610 m x 6.1 m. .. 55 

Figure 4.5 - Predicted resonant and non-resonant transmitted Sound Power Level (SWL) for duct 

0.305 m x 0.610 m x 6.1m. ...................................................................................... 57 

Figure 4.6 - Predicted resonant and non-resonant TL extended to the frequencies above the 

critical frequency for duct 0.305 m x 0.610 m x 6.1 m............................................ 59 

file:///C:/Users/Himanshu%20Malushte/Desktop/Himanshu%20Malushte%20-%20Final%20Draft.docx%23_Toc354322959
file:///C:/Users/Himanshu%20Malushte/Desktop/Himanshu%20Malushte%20-%20Final%20Draft.docx%23_Toc354322960
file:///C:/Users/Himanshu%20Malushte/Desktop/Himanshu%20Malushte%20-%20Final%20Draft.docx%23_Toc354322962
file:///C:/Users/Himanshu%20Malushte/Desktop/Himanshu%20Malushte%20-%20Final%20Draft.docx%23_Toc354322963
file:///C:/Users/Himanshu%20Malushte/Desktop/Himanshu%20Malushte%20-%20Final%20Draft.docx%23_Toc354322964
file:///C:/Users/Himanshu%20Malushte/Desktop/Himanshu%20Malushte%20-%20Final%20Draft.docx%23_Toc354322964
file:///C:/Users/Himanshu%20Malushte/Desktop/Himanshu%20Malushte%20-%20Final%20Draft.docx%23_Toc354322965
file:///C:/Users/Himanshu%20Malushte/Desktop/Himanshu%20Malushte%20-%20Final%20Draft.docx%23_Toc354322965
file:///C:/Users/Himanshu%20Malushte/Desktop/Himanshu%20Malushte%20-%20Final%20Draft.docx%23_Toc354322966
file:///C:/Users/Himanshu%20Malushte/Desktop/Himanshu%20Malushte%20-%20Final%20Draft.docx%23_Toc354322966
file:///C:/Users/Himanshu%20Malushte/Desktop/Himanshu%20Malushte%20-%20Final%20Draft.docx%23_Toc354322968
file:///C:/Users/Himanshu%20Malushte/Desktop/Himanshu%20Malushte%20-%20Final%20Draft.docx%23_Toc354322969
file:///C:/Users/Himanshu%20Malushte/Desktop/Himanshu%20Malushte%20-%20Final%20Draft.docx%23_Toc354322969
file:///C:/Users/Himanshu%20Malushte/Desktop/Himanshu%20Malushte%20-%20Final%20Draft.docx%23_Toc354322970
file:///C:/Users/Himanshu%20Malushte/Desktop/Himanshu%20Malushte%20-%20Final%20Draft.docx%23_Toc354322970


www.manaraa.com

xi 

 

Figure 4.7 - Predicted SWL for resonant and non-resonant responses extended to the frequencies 

above the critical frequency for duct 0.305 m x 0.610 m x 6.1 m. .......................... 60 

Figure 4.8 - Predicted and theoretical TL for duct 0.610 m x 0.610 m x 6.1m. ........................... 61 

Figure 4.9 - Predicted and theoretical TL for duct size 0.610 m x 1.22 m x 6.1 m. ..................... 62 

Figure 4.10 - Predicted and theoretical TL for duct 1.22 m x 2.44 m x 6.1 m. ............................ 64 

Figure 4.11 - Predicted and experimental TL for duct 0.762 m x 0.356 m x 4.57 m………………67 

Figure 4.12 - Predicted and experimental TL for duct 0.229 m x 0.152 m x 4.57 m………………68 

 

 

 

 

 

  

file:///C:/Users/Himanshu%20Malushte/Desktop/Himanshu%20Malushte%20-%20Final%20Draft.docx%23_Toc354322971
file:///C:/Users/Himanshu%20Malushte/Desktop/Himanshu%20Malushte%20-%20Final%20Draft.docx%23_Toc354322971
file:///C:/Users/Himanshu%20Malushte/Desktop/Himanshu%20Malushte%20-%20Final%20Draft.docx%23_Toc354322972
file:///C:/Users/Himanshu%20Malushte/Desktop/Himanshu%20Malushte%20-%20Final%20Draft.docx%23_Toc354322973
file:///C:/Users/Himanshu%20Malushte/Desktop/Himanshu%20Malushte%20-%20Final%20Draft.docx%23_Toc354322974


www.manaraa.com

xii 

 

List of Tables 
 

 

Table 4.1 - Theoretical TL (ASHRAE, 2011) and the initially predicted TL using SEA for a duct 

0.305 m x 0.610 m x 6.1 m. ........................................................................................ 48 

Table 4.2 - TL for plane acoustic mode and higher order mode propagation for duct 0.305 m x 

0.610 m x 6.1 m. ......................................................................................................... 50 

Table 4.3 - Predicted TL values (with revised formulation) and theoretical TL values for duct 

0.305 m x 0.610 m x 6.1 m. ........................................................................................ 54 

Table 4.4 - Predicted Resonant and Non-Resonant response values duct 0.305 m x 0.610 m x 6.1 

m. ............................................................................................................................... 56 

Table 4.5 - Predicted values for resonant and non-resonant transmitted SWL for duct 0.305 m x 

0.610 m x 6.1 m. ......................................................................................................... 58 

Table 4.6 - Predicted and theoretical TL values and corresponding differences for duct 0.610 m x 

0.610 m x 6.1 m. ......................................................................................................... 62 

Table 4.7 - Predicted and theoretical TL values and corresponding differences for duct 0.610 m x 

1.22 m x 6.1 m……………………………………………………………………………………...63 

Table 4.8 - Predicted and theoretical TL values and corresponding differences for duct 1.22 m x 

2.44 m x 6.1 m…………………………………………………………………………………….65 

Table 4.9 – Results for duct 0.305 m x 0.305 m x 6.1 ………………………………………………….65 

Table 4.10 - Results for duct 0.305 m x 1.22 m x 6.1 m………………………………………………...66 

 



www.manaraa.com

xiii 

 

Table 4.11 - Results for duct 0.305 m x 1.22 m x 6.1 m…………………………………………………66 

Table 4.12 - Predicted and experimental TL values and corresponding differences for duct 0.762 

m x 0.356 m x 4.57 m .............................................................................................. 68 

Table 4.13- Predicted and experimental TL values and corresponding differences for duct 0.229 

m x 0.152 m x 4.57 m ............................................................................................... 69 

Table 4.14 - Results for duct 0.457 m x 0.229 m x 4.57 m……………………………………………...70 

Table 4.15 - Results for duct 0.762 m x 0.762 m x 4.57 m……………………………………...………70 

  



www.manaraa.com

xiv 

 

List of Symbols 
 

Lower case letters 

 

a ,b       Cross sectional dimensions of the duct 

             Frequency 

            Critical frequency 

           First vibration resonant frequency of the duct wall 

c           Speed of sound 

           Bending wave speed 

           Longitudinal wave speed 

          Thickness of the duct wall 

           Wavenumber 

          Dimensions of duct wall 

          Modal density 

          Average vibration velocity 

 

 



www.manaraa.com

xv 

 

Upper case letters 

           Bending stiffness 

E           Young’s modulus  

            Energy in Subsystem i 

            Effective length of the duct 

           Total length of the edges of the duct walls 

                 Perimeter of the duct wall 

            Sound reduction index 

            Total surface area of the duct walls  

            Effective surface area of the duct 

            Surface area of the internal air cavity   

             Surface area of a single duct wall 

             Enclosed air volume in the duct 

            Sound power 

 

Greek notations 

            Duct Attenuation Rate 



www.manaraa.com

xvi 

 

             Poisson’s ratio 

             Density of the duct material 

            Density of air 

              Surface density of the duct wall 

              Absorption coefficient of the duct wall 

             Internal loss factor of the enclosed space 

              Coupling loss factor from subsystem i to j 

              Dissipation loss factor of the duct wall 

            Radiation efficiency 

            Transmission coefficient 

 

 



www.manaraa.com

1 

 

Chapter 1: Introduction 
 

The objective of this study is to evaluate the Statistical Energy Analysis (SEA) method for 

prediction of the Transmission Loss (TL) of breakout noise through air duct walls for any given 

dimension of an air duct. This SEA method will be evaluated by comparing the SEA predicted 

results to the theoretical data published for the corresponding configurations of air ducts from 

ASHRAE Handbook: HVAC Applications (ASHRAE, 2011). The predicted results will also be 

compared with the experimental data (Cummings, 1983a) published for validation. As the finite 

element method (FEM) or boundary element method (BEM) are ineffective at the higher 

frequencies, the SEA is assumed to serve as a useful tool for engineering design. The evaluation 

of this approach will be further stretched to its application on air ducts with different dimension, 

different duct materials and different gages (i.e. duct wall thickness). 

 

1.1  Analysis of Background of Statistical Energy  

Statistical Energy Analysis (SEA) is a probabilistic analysis tool to determine the global 

vibrational energies of complicated systems. The development of Statistical Energy Analysis 

(SEA) emerged to predict the vibrational response to rocket noise of satellite launch vehicles and 

their payloads in the early 1960’s (Heckl and Lewit, 1994). Though the vibrational modes of 

structures could to be predicted computationally, the size of the models and the computational 

speed was discouraging to the engineers as it could predict only a few of the lowest order modes. 

Traditionally, in analysis of mechanical vibrations, the lowest modes are usually of most interest 

because these modes tend to produce the greatest displacement response. But while designing 
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large and lightweight structures, it is imperative to account for high frequency broadband loads 

to predict fatigue, failure or noise emission. The SEA proves to be an effective method to predict 

high frequency loads. Since its formulation, SEA has been widely used in a growing number of 

applications. It has also been successful in predicting the average vibrational amplitudes and 

sound pressures in space vehicles, airplanes, ships, buildings, large machines, etc. (Heckl and 

Lewit, 1994) 

 

1.2  Approach of Statistical Energy Analysis  

To start with, the abbreviation “SEA” exhibits its methodology. ‘Statistical’ corresponds to the 

systems being studied, which are assumed to be taken from a statistical population having known 

distributions of their dynamical parameters. The ‘Energy’ describes the behavior of the system in 

terms of stored, dissipated and exchanged energies of acoustics and/or vibration. ‘Analysis’ 

represents that SEA is a framework rather than a specific technique (Lyon and DeJong, 1995). 

The approach of SEA is to break up the given system into subsystems. Subsystems are a division 

of several physical elements so that the vibro-acoustic characteristics are similar over them like 

damping, excitation and coupling properties. SEA then models the entire system and the energy 

distribution over the subsystems with the help power balance equations. The underlying 

assumption is that total incoming power and total dissipated power are equal. Besides the power 

balance assumption, there are two other important assumptions in the conventional SEA, with 

regard to the damping: (1) the damping is proportional to the kinetic energy of a subsystem and 

(2) the rate of power flow between subsystems is proportional to the difference in subsystem 

energies (Woodhouse, 1981 b). Certain transmission coefficients need to be evaluated in order to 

understand the relation of transferred power between the subsystems to their equilibrium 
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energies.  These coefficients can be estimated by one of the main approaches in SEA: (1) the 

modal approach, (2) the wave approach and (3) the mobility approach. The modal approach 

controls the interaction of the uncoupled modes in the subsystems. With the decoupled boundary 

condition, it is possible to express the multimode power transfer coefficients. This is an ideal 

approach for vibro-acoustic problems involving acoustic interaction between enclosed volumes, 

but it is not the ideal approach for coupling between solid structures. To overcome that problem, 

the wave approach plays an important role. The vibrational fields in this approach are modeled as 

superposition of the travelling waves and the transferred power within the subsystems can be 

derived from the wave transmission and reflections at the subsystem interfaces. The mobility 

approach is based on the concept of dynamic mobility, or impedance to express the interaction of 

the coupled subsystems (Fahy, 1994).  In this study, the wave approach will be employed for the 

coupling between the structures. This method is largely standardized and commonly used by the 

engineers. 

 

1.3  Important Parameters in Statistical Energy Analysis 

There are four essential parameters in the study of SEA: (1) the damping loss factor, (2) the 

coupling loss factor, (3) the power (input, dissipated, transmitted) and (4) number of modes per 

frequency band. The damping loss factor relates to the power dissipated in a subsystem. To 

experimentally determine the damping loss factor, it needs to be spatially averaged for each 

frequency band. The damping loss factor can be measured by various methods, for instance, the 

power injection method that is performed by applying a known power input. The coupling loss 

factor relates to the energy flow between subsystems. It is defined as the fraction of energy that 

is transmitted from one subsystem to another (Craik, 1996). While dealing with structures, the 
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coupling loss factor is proportional to the transmission coefficient that depends upon the 

orientation, thickness and material properties of the structure. In acoustics, the coupling loss 

factor is proportional to the radiation efficiency. To experimentally determine the coupling loss 

factor within the subsystems, one of the subsystems should be more damped than the other. The 

damping loss factor of the other subsystem should be known. One of the subsystems is directly 

excited during the experiment. The reaction of both the subsystems must be evaluated to 

determine the energy in each subsystem. The power flow from one subsystem to another can be 

evaluated once you calculate all the loss factors which are dependent on the dimensions, material 

properties of the subsystems, and the energy transfer from one to another. The net power flow 

can then be calculated knowing the individual power flows for all subsystems. The fourth 

parameter is the number of modes per frequency band as mentioned, that is the number of modes 

per the evaluated frequency band valid for both, the constant bandwidth and the octave band. 

Modal density is another important parameter which emerges stating the number of modes per 

frequency bandwidth.  

 

1.4  Some Limitations and Assumptions in Statistical Energy Analysis 

SEA has limitation in accuracy at the lower frequency ranges, generally below 200-400 Hz. SEA 

cannot predict excitation at specific or narrow band frequencies.  Due to the average frequency 

responses at a frequency band, it is incapable to predict modes or mode shapes of the system. It 

does not render information on local distribution vibration level within the subsystems. It is 

unable to give information about the spatial distribution of the field variables within each 

subsystem (Fahy 1994). Along with the limitations, there are various assumptions made while 

performing the SEA. The coupling between the subsystems is assumed to be linear and 
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conservative. The resonant modes in a particular frequency band are assumed to have the same 

amount of energy. In addition, the damping loss factor is assumed to be equal for all modes in 

any particular frequency band. The damping should not be too low or too high. Homogeneity of 

the subsystems is imperative to yield valid vibrational level calculations. Also, sound fields have 

to be assumed to be reverberant and diffuse (Sarradj 2004). The transmission of power from one 

subsystem to another subsystem is due to the existing resonant modes in the frequency band. 

Also the power flow within the subsystems varies proportionally to their energy level. However, 

SEA is simple and effective at high frequencies, particular for the cases of the present study in 

sound transmission loss of breakout noise from duct as discussed in Section 1.8. 

 

1.5  Example of Simple Statistical Energy Analysis 

Consider a simple example of two subsystems as shown in Figure 1.1 where there are two 

subsystems: Subsystem 1 and Subsystem 2. The arrow pointing towards the subsystems indicate 

the power received by the subsystems. While the arrows pointing away from the subsystems 

indicate the power lost from the subsystems. The arrows pointing within the subsystems indicate 

the exchange of power between the subsystems. W1 and W2 show the power entering the 

Subsystems 1 and 2, respectively, whereas W1d and W2d indicate the power dissipated by the 

Subsystems 1 and 2, respectively. W12 shows the power the transfer of power from Subsystem 1 

to Subsystem 2, and similarly W21 shows the transfer of power from Subsystem 2 to Subsystem 

1.  
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The dissipated power at angular frequency of ω in the subsystems can be shown by the following 

equations, 

            , (1.1) 

and            , (1.2) 

where η1d and η2d are the damping loss factors of Subsystems 1 and 2 respectively. E1 and E2 are 

the total vibrational or acoustic energy of the modes at frequency f. 

  Subsystem 1 Subsystem 2 

  W
1

   W
2

 

  W
1d

   W
2d

 

  W
12

 

  W
21

 

SEA model of two subsystems 

Figure 1.1 - Simplistic SEA model of two subsystems in interaction. 
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The net power transmitted between subsystems can expressed as, 

                                        ,                               (1.3) 

 and                                                                  ,                                                            (1.4) 

where η12 and η21 are the coupling loss factors between the Subsystems 1 and 2. 

The SEA calculation is based on energy flow equilibrium; hence the power balances for the two 

subsystems can be given by, 

                                                                           ,                                              (1.5) 

and                                                                      .                                             (1.6) 

When combining the above equations, the power balance equation for the two subsystems can be 

expressed in matrix form as, 

                                           
  

  
    

             

             
  

  

  
           .                        (1.7) 

The generalized form of the power balance equation with n number of subsystems will be, 

                                          

  

  

 
  

    

           

        
 

    

 
 

  
   

  

  

  

 
  

      ,                               (1.8) 

where ηi stands for the total loss factor of the i
th

 system which is the summation of the damping 

loss factor and the coupling loss factors and in general can be stated as (Craik 1996) 

                                                                 
 
         ,                                               (1.9) 
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where   is the number of subsystems and the subscript i and j represent the identities of the 

subsystems. 

 

1.6  The Need to Account for the HVAC Duct Noise. 

Air ducts are responsible for providing fresh, heated or cool air for the building ensuring a 

pleasant climate for its inhabitants. There are, however, some inherent side effects in the 

ductwork that are responsible for carrying unwanted noise around the building. Noise could be 

generated by fans, mechanical systems or even by the air draft. The air-borne noise transmitted 

through the duct emerges into the building through grilles and other system outlets. This problem 

can be handled by lining the interior of the duct with suitable sound absorbing material or air-

duct silencers. In addition to the air-borne noise from the duct outlets, sound can also be 

transmitted directly through the walls of the duct into the occupied space. This is called breakout 

noise. These distractions from both air-borne and breakout noise can cause difficulty for the 

occupants in terms of their ability to concentrate on their work, which in turn can affect their 

performance. Various attempts are being made to control this unwanted noise and present the 

occupants with a sound environment.  

 

1.7  Breakout Noise in Air Duct 

As discussed earlier the breakout noise in the air duct is the sound transmitted directly through 

the walls of the duct. It can be defined as the external radiation of acoustic power through the 

walls of a duct from an internal sound field. The basic assumption in defining the transmission 

loss, TL (ratio of incident sound power to the transmitted sound power through a partition) with 
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respect to the ductwork is that the sound power level inside the duct is independent of the 

distance along the duct. However, this assumption may not hold true because some of the 

acoustical energy is lost through absorption and radiation from the duct walls (Lilly, 1987).  

In many models, the breakout noise prediction assumes that the sound field inside the duct is 

composed of one or more propagating modes (rigid duct modes or coupled structural/acoustic 

modes) as opposed to more or less diffuse, reverberant sound field commonly assumed to exist 

within building space (Cummings 1983b). The cross section geometry highly influences the 

breakout characteristics. The three most common cross sectional duct shapes can be seen in 

Figure 1.2.  

 

 

 

Figure 1.2 - Common cross sections of an air duct (Cummings, 2001). 



www.manaraa.com

10 

 

There is a change in the pattern of transmission loss of the ductwork with respect to its cross 

sectional geometry.  A rectangular duct cross section has low breakout wall transmission loss  at 

low frequencies because of the strong structural response to the internal sound field. The circular 

cross-section ducts have a very high transmission loss at low frequencies. The ducts with flat 

oval cross sections can be expected to display the transmission loss characteristics of both, the 

rectangular and the circular duct cross section (Cummings, 2001).  

 

1.8  The Need to Apply Statistical Energy Analysis on Air Duct.  

There are various ways of evaluating the transmission loss for the air ducts computationally. 

These may include Finite Element Analysis (FEA), Boundary Element Method (BEM) etc. 

These methods can be employed for calculating the dynamic response at the lower order modes 

of a structure but when it comes to large modal density at high frequencies, these methods pose 

computational difficulties. The higher frequencies demand more computation and finer 

discretization of the geometry in order to accommodate more modes in the analysis (Shorter 

2007). In addition to this, the increasing degrees of freedom poses a challenge for these methods 

to handle. This eventually results in longer computational times. The uncertainties of these 

methods highlight a need for an efficient method to understand the sound transmission at higher 

frequencies. The SEA is reasonably accurate at the higher frequencies as discussed earlier and 

the computational time is a fraction of the FEA model. As the frequency increases, the number of 

modes per band increases. SEA proves to be a capable tool for dealing with this issue in other 

applications and has been proven to produce a decreasing amount of calculation variance with 

the experimental measurements which will be exhibited in the succeeding sections. 
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1.9  The Intended Benefits of the SEA Application 

In the present study, SEA is evaluated to calculate the transmission loss.  The predicted data by 

SEA will be evaluated with the existing theoretical data (ASHRAE, 2011) for some given air 

duct dimensions. The existing breakout noise prediction method is listed based on the theoretical 

data, which is limited to the particular dimensions, wall thickness, and materials of the air duct. 

The SEA has the advantage of overcoming these limitations to predict the sound transmission of 

breakout noise for ductwork with varying material and gages (duct wall thickness) which is 

currently unavailable in our field.  

 

1.10  Summary 

In order to apply the Statistical Energy Analysis (SEA) for predicting the Transmission Loss 

(TL) of breakout noise through air duct walls, this chapter reviews the background and 

fundamentals of SEA. It is highlighted that SEA is effective in the prediction of dynamic 

behavior of a structure at high frequencies, which is the main driving force for the development 

of this method (SEA). The approach of SEA is chiefly focused on forming the power balance 

equation with the help of essential SEA parameters, for instance, damping loss factor, coupling 

loss factor, power (input, dissipated, transmitted) and the mode number. There are certain 

assumptions in the SEA methods in terms of energy distribution, nature of coupling between 

subsystems, homogeneity of the subsystems, etc. Moreover, there are some limitations for the 

SEA method with respect to its accuracy at low frequency, its capability of system mode shape 

predictions, etc.  A simple example is stated to introduce the methodology of SEA that enables 

one to formulate a simple power balance equation. The need to account for the HVAC duct noise 

is chiefly due to the noise distraction in spaces like offices, etc. leading to an unproductive 
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environment. Breakout noise in air duct can be affected by the geometry of the duct (e.g. 

rectangular, oval, and circular); which in turn affects the transmission loss pattern for each duct 

geometry. SEA proposes to predict the transmission loss at high frequencies with reasonable 

accuracy. This method can also enable the user to predict the transmission loss of the duct 

irrespective of size, material and thickness with less computation time as opposed to Finite 

Element Analysis (FEA) and Boundary Element Method (BEM).  
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Chapter 2: Literature Review 
 

There has been significant research in the field of estimating the sound transmission through air 

ducts by numerous researchers over the past decades. The Statistical Energy Analysis (SEA) too 

has gained much attention in past five decades after being developed in 1960’s (Fahy, 1994). 

Ever since, the study of SEA has been broadened to facilitate its application in the various fields 

of engineering besides the aeronautical sector as initially intended.  The overviews of these 

researches related to the SEA application and the efforts to effectively predict the sound 

transmission from breakout noise through air ducts have been discussed in this chapter.  

 

2.1  Study of Sound Transmitted Through Duct Walls 

Extensive theoretical and experimental investigations have been carried out by Cummings 

(1975a, 1975b, 1978, 1979, 1980, 1981, 1982, 1983b, 1983c, 1985, and 2001) over the years 

which looked into the mechanism of the transmission sound through walls of air-conditioning 

ducts. In dealing with sound transmission through a folded annular duct as an alternative to 

rectangular ducts to increase the sound transmission loss, Cummings (1975) stretched a theory of 

sound transmission through a 180° bend in a hard-walled rectangular duct from his previous 

work (1975b). Later  Cummings (1978) described a one dimensional linearized analysis of 

fundamental mode sound generation and propagation in rigid-walled ducts with flow and axial 

temperature variation. The study intended to investigate the situation where both the mean axial 

flow and temperature gradients were present inside the duct. Cummings (1979) has also dealt 

with the attenuation of lined plenum chambers in duct systems and proposed a design procedure 
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for plena. In a study investigating the use of line source theoretical models to predict the low 

frequency radiation from the walls of the duct, Cummings (1980) was successful in predicting 

both the far field directivity of radiation at discrete frequencies and total radiated power. The 

theoretical predictions showed a good agreement with the experimental results. In an attempt to 

address the prediction of low frequency acoustic transmission through the walls of the 

rectangular ducts, Cummings (1981) proposed the use of design charts as a substitute for lengthy 

calculations that could have been time consuming to program on a computer.  

Cummings (1982) also investigated the prediction of pressure fields for one- and two-

dimensional numerical models of non-uniform lined duct with experiments. The method 

validated one-dimensional model for frequencies below the cut-on frequency of the first 

transverse mode. The two-dimensional models yielded reasonable results at frequencies below 

and above the cut-on frequency of the first transverse modes though it was highly sensitive to 

multidimensional acoustic fields. Cummings (1983b) discussed the idea of the asymptotic 

solutions for high-frequency acoustic transmission through the walls of the rectangular ducts. 

Cummings (1983c) had also authenticated a closed form solution of the structural wave equation 

governing the motion of the duct wall. The solution is used to predict the response of the walls to 

the internal pressure field and the transmission of internally propagated higher order acoustic 

modes through the duct walls. While investigating internally propagated sound through the walls 

of air conditioning ducts with different cross sectional geometry, Cummings (1985) devised a 

prediction method for the insertion loss of the external acoustic lagging for rectangular duct, 

circular and flat-oval cross section duct. The predictions have been compared with experimental 

results. This study also referred to an earlier experimental investigation by Guthrie (1979) in 

which the low-frequency internal/external sound transmission through the walls of rectangular 
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and flat-oval ductwork had been studied. There was another method for computing the total 

radiated sound power level from breakout noise in HVAC ductwork by Lilly (1987). The study 

presented a simple analytical method for computing breakout noise based on the idea of 

computing total radiated sound by the incorporating the acoustic intensity outside the duct over 

its entire surface area. It made an emphasis on the fact that the total power radiated from the duct 

was not just dependent on the inlet power and transmission loss but also on the total exposed 

duct surface area and the attenuation constant. However, the study was more suited for spiral 

round duct. Cummings (2001) also addressed the issue of acoustic breakout and breakin sound 

through duct walls by making an effort to identify the main physical processes involved. The 

study also commented on the future area of research in terms of clarifying the relative roles of 

the structural and acoustic types of coupled modes in sound transmission, ways of modeling 

complex systems and need for developing pure numerical methods to yield accurate prediction 

results.  

 

2.2  Study on Statistical Energy Analysis 

There have been multiple reviews in the past of statistical energy analysis (SEA) since its 

development. Woodhouse (1981a) had investigated the use of SEA for vibration analysis. The 

study discussed the possible methods of measuring the SEA parameters in a given problem and 

enabled the user to decide whether SEA was indeed suitable for that given problem. It also 

guided the users with SEA’s application especially helping them to divide subsystems. 

Woodhouse (1981b) had also discussed SEA applications in structural vibration using Rayleigh’s 

classical approach in order to study systems with a finite number of degrees of freedom. Some 
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modifications had been suggested to strategize SEA modeling based on the type of coupling 

involved.  

Heckl and Lewit (1994) applied statistical energy analysis to experimentally and numerically 

quantify sound and vibration transmission path of three plates. They investigated the energy flow 

and the coupling properties in order to find the paths responsible for sound transmission in 

complex structure. It eventually assisted in optimizing the measure for noise control. Heckl and 

Lewit (1994) further proposed to determine SEA temperature by stating that energy per mode 

and coupling loss factor are analogies of temperature and heat conduction coefficient, 

respectively. These analogies assist in evaluating the direction of sound and vibration 

transmission. Moreover, an analysis on the nature (strong and weak) of couplings of subsystems 

was also made based on the temperature difference (Heckl and Lewit, 1994). Related to SEA 

temperatures, there has also been a study on the use of entropy balance as opposed to energy 

balance in dealing with SEA problem (Le Bot et al., 2011). The study of entropy balance as an 

alternative technique was on the backdrop of SEA origin from statistical mechanics and 

thermodynamics. The study further stretched beyond the use of SEA which for a long time was 

limited to the application of the first principle of thermodynamics (energy balance) by 

introducing the idea of having an entropy balance as a substitute to the energy balance. 

A critical overview of SEA by Fahy (1994) discussed the principles for the use of probabilistic 

energetic models of SEA for prediction of high-frequency vibration. It also stated the strength 

and weaknesses of SEA. It illustrated the different approaches to SEA viz: (1) modal approach, 

(2) wave approach, (3) mobility approach, (4) modal energy and (5) wave intensity, etc. It 

discussed the contemporary deficiencies in SEA approaches. Some of the deficiencies are: (1) 

though being a probabilistic approach, there is no proven procedure for making the estimates of 
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confidence in the predicted results; (2) the inability of SEA to deal with the narrow band and 

tonal excitation without auxiliary statistical data for the energy response functions for directly or 

indirectly driven subsystems of various generic forms; and (3) providing no information about 

the spatial distribution of the field variables within each subsystem, etc. SEA’s conspicuous 

success in dealing with vibro-acoustic problems involving the interaction of broadband sound 

fields in air with structures has been discussed. Fahy (1994) also suggested further research in 

terms of handling highly non-uniform structural components, study of spatial distribution 

statistics of response variables, developing a generalized method for predicting indirect power 

transfer coefficients, etc.  

There have been some publications tackling complex problems by SEA involving complex 

geometry. Lyon and DeJong (1995) provided exhaustive testing of theory and application of 

SEA in acoustics and vibration. In addition to predicting noise and vibration transmission, they 

also explore the impact of SEA in computer power and resources. 

Burroughs et al. (1997) had also reviewed the basic concepts of SEA. The study developed a 

power balance equation for coupled simple oscillators with resonant modes. Assumptions in 

SEA had been discussed with regard to the frequencies of resonance for each subsystem to be 

uniformly distributed in frequency within each of the frequency bands used in the analysis. 

Therefore, assuming energy resides only in resonant modes, the total energy in each subsystem is 

the sum of the energies in the modes. The energy is thus assumed to be equally distributed 

among the modes in each subsystem and frequency band. The study also outlined the methods 

for obtaining the parameters required to predict the energy distribution within a system using 

power balance equations.  
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Sarradj (2004) had discussed the basic ideas behind the method for the treatment of vibro-

acoustic problems, which are based on energy variables like energy density, power, etc. as 

opposed to quantities such as force and displacement. The theory and application of SEA 

regarded as the most popular method was also explained. Besides introducing SEA in the 

traditional format, Sarradj (2004) has addressed the limitations of SEA in terms of weak 

couplings, extent of damping, homogeneity of the subsystems, etc. To overcome some of these 

limitations, he  proposed methods such as: (1) wave intensity analysis to avoid the diffuse field 

assumption in the subsystem, (2) energy finite element method to deal with heat conduction, (3) 

smooth energy model or high frequency boundary element method to formulate a boundary 

integral using energy variables, (4) energetic mean mobility approach that accommodates 

heterogeneous structures, (5) complex envelope distribution analysis with a cepstrum calculated 

from wavenumber spectrum in contrast to the frequency spectrum, and finally (6) hybrid 

methods to incorporate prominent modal behavior of components into SEA-like models.     

The research in the field of SEA had been stretched further (Le Bolt and Cotoni, 2010) 

concerned with its validity which can be defined in terms of four criteria: (1) mode count, (2) 

modal overlap, (3) attenuation factor, and (4) coupling strength. It suggested that the mode count 

(i.e. number of modes per unit frequency) and the modal overlap should be high. Moreover, the 

normalized attenuation factor (i.e. sound absorption factor) and coupling strength (i.e. strength of 

force exerted in an interaction) must be low. The idea of applying the dimensional analysis to 

exhibit the space of dimensionless parameters for validation was conducted on a vibrating 

system of rectangular plates. The diagrams for SEA validity were introduced and discussed.  In-

order to illustrate the usefulness of validity diagrams, a numerical simulation was presented on a 

pair of coupled rectangular plates. It also commented that the four criteria discussed earlier for 
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validity domain of SEA were not the only criteria to entirely define the validity domain of SEA. 

This was because of some other assumptions, such as nature of excitation and the problem of 

variance in SEA were not been discussed in the study.   

A study was also been carried out to apply the graph theory for noise and vibration control using 

SEA (Guasch and Cortes, 2009). It established a combined path-algebras and standard linear 

matrix algebra to derive several transmission path results in a generalized mathematical 

framework. SEA graphs have been developed based on the SEA schematic models with nodes 

representing subsystems and edges existing between subsystems having non-null coupling loss 

factors. In addition, a scheme that makes use of graph cut algorithms (used to locate minimum 

cut in SEA graph that separates a source subsystem from the receiver subsystem) had been 

introduced to reduce the energy at the target subsystem by modifying as fewer system loss 

factors as possible; thus enabling a beneficial strategy from an engineering perspective. 

 

2.3  SEA in Noise Control Applications 

While discussing the insertion loss of a closed space, for instance air duct, enclosure, room etc., 

theoretical models based on Statistical Energy Analysis (SEA) for insertion loss of an acoustic 

enclosure had been established by Ming and Pan (2004). The non-resonant transmission (i.e. 

trace wave (moving along the surface of the enclosure wall) generated by the incident acoustic 

excitation field) and the interaction between enclosure walls were included in the models. It was 

demonstrated that the insertion loss of an acoustic enclosure was chiefly governed by the non-

resonant modes at the intermediate frequencies because of a very low radiation capacity at the 

resonant modes. This experimental study was carried out using two types of acoustical 
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enclosures: a rectangular box enclosure and an enclosure with fibrous glass composite panels. 

The measured results were compared with the predicted values.  

To deal with the issue of non-resonant transmission, an earlier study had addressed the inability 

of conventional SEA to predict the non-resonant response of the structure (Ranji and Nair, 2001). 

The study presented a modified SEA formulation in which the non-resonant responses could be 

estimated. The formulation was similar to the conventional SEA modeling for resonant response 

but different expressions for the coupling loss factors was proposed. Two reverberant rooms 

separated by a panel were set as example in their study.   

Sgard et al. (2010) predicted the acoustical performance of enclosure using the hybrid statistical 

energy analysis. A general and simple model was proposed for predicting the acoustic 

performance of a large free-standing enclosure. The model was able to handle the complexity of 

the enclosure configuration at a large frequency range. The hybrid method combined the SEA for 

the sound transmission across the various elements of the enclosure and the image sources 

method for the sound field inside the enclosure. The approach claimed to have the features to 

offer more flexibility to calculate the coupling loss factors for various sound absorbing materials. 

The study affirmed the use of image source technique as an adept description of internal sound 

field to account for the location of the acoustic source in the enclosure. Hence it proposed the 

combination of the coherent image source method and SEA as a reliable tool to predict the 

acoustics at low frequencies.  

A hybrid method had also been suggested earlier by Langley (1999) for dynamic analysis of 

complex systems. The method was based on partitioning the degrees of freedom into “global” set 

and “local” set. The method was found to yield good results for simple systems. It involved the 
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unification of a number of different analytical methods, for instance, the finite element method, 

the statistical energy analysis (SEA), fuzzy structure theory and the Belyaev “smooth function” 

approach (Belyaev, 1993).  

Lie et al. (2012) discussed about the discrepancies between the SEA prediction and measured 

results especially at the low and intermediate frequencies. In the study, the sources of 

discrepancy (e.g. incompatible boundary conditions and measurement point distribution) were 

identified by an investigation of the limitations of SEA for energy transfer in the entire frequency 

range and by the effect of structure-structure coupling and acoustic-structure coupling on 

prediction of noise reduction. The predicted structural response and the noise reduction of an 

acoustical enclosure (of a specified dimension and material properties) were compared with the 

experimental results for validation. 

Most theories of SEA in past few decades could only accurately predict the transmission loss for 

right-angled wall junctions in buildings, but non right-angled junctions in the buildings has not 

been addressed. This information is of extreme significance in modern high-rise buildings 

because of complex structure. The study by Tang (2005) measured the total loss factors and 

vibrational power transmission losses in existing buildings having non right-angled wall 

junctions. The dependence of vibration power transmission was also discussed.  

 

2.4  Study on Some Essential Parameters of SEA 

There has been a comprehensive research to deal with the radiation efficiency that relates to the 

radiated power with spatially averaged vibration of the system. In SEA, it is an instrument in 

estimating the coupling loss factor between the air and solid structures. A considerable study had 
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been conducted in investigating the radiation efficiency of plates using the modal summation 

approach (Xie et al., 2005).  The study confirmed the vital radiation efficiency equations from 

Ver and Homer (1971) in prediction of the radiation efficiency of the plates.  

For determining the non-resonant transmission, an essential parameter is the transmission 

coefficient which gives ratio of the total power transmitted through a system to the total power 

incident on it. The transmission coefficient is useful to calculate the non resonant coupling loss 

factor. Beranek and Ver (1992) established a formulation of sound reduction index for various 

cases that they are widely used in SEA applications. In an earlier study, Langley (1990) had 

discussed a calculation of the wave transmission coefficients of structural joints. The study 

considered a simple plate/beam junction consisting of arbitrary number of plates either coupled 

through a beam or directly coupled through a line.  

Sometimes when a structure is modified, it demands re-analysis for yielding the desired results. 

This issue had been studied and addressed by Thite (2010). The study suggested that Apparent 

Coupling Loss Factors (ACLF) (i.e. coupling loss factor calculated for modified analysis) could 

be estimated in the manner similar to that in a conventional SEA. The calculation of ACLF could 

enable the analysis of a modified structure without re-analysis as in conventional SEA thereby 

claiming this method to be computationally efficient. 

Considering  vibrational energy distribution between two coupled plates, a study in 

determination of the plate loss factors (or so called internal loss factors) and coupling loss factors 

by power injection method (Bies, 1980) had been carried out in order to determine the loss 

factors by the inversion of linear power balance equations. It was suggested that the modal 

statistical independence (i.e. independent evaluation of quantities such as modal densities of the 
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subsytems, etc.) could be adequately approximated by the means of injecting power at three or 

more points in the chosen system. The loss factors obtained by this method were in good 

agreement with the steady state determinations of the same quantities.  

An attempt made on a scaling procedure intended to reduce the computational costs associated 

with a deterministic approach in wavelength simulation (Rosa, 2010). The results obtained from 

standard techniques as Classical Modal Analysis (CMA) and Statistical Energy Analysis (SEA) 

were compared with an innovative approach called Asymptotic Scaled Modal Analysis (ASMA). 

It inferred that ASMA was not as effective as SEA, but it could however be served as a useful 

tool to SEA in structural configurations where analytical solutions were not available.  

An attempt had been made to present a new and efficient method to calculate point mobilities 

from subcomponents of a full structure (Ragnarsson et al., 2010). Earlier subcomponent 

modeling had been used to obtain information on dynamic behavior of complex assembly 

structures using smaller and more efficient models. Point mobility calculations at the 

subcomponent level are employed to obtain more precise parameters of SEA models. Since 

complete system analysis is often computationally expensive, so only the individual 

subcomponents are selected and analyzed. Though this procedure saves computational effort, it 

also results in significant loss of accuracy. This error can be attributed to the approximation used 

in defining the boundary conditions. To address this issue, by taking a cue from an earlier work 

which demonstrated a certain level of accuracy in achieving the boundary condition of a 

structure by describing the interface dynamics by a combination of dynamic waves; the authors 

in this study developed the method further to present a more robust and an efficient wave 

extraction procedure.  
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2.5  Application of SEA in Other Fields. 

 The SEA has broadened its gamut of applications. It has also been applied successfully in many 

other areas such as ships, aircrafts, car etc. An acoustic research on electric motor quantified the 

transmission of vibrations from stator yoke to motor frame (Delaere et al, 1999) in the stator 

yoke and in the coils of the electric motor. SEA proved to be a valuable tool in handling the 

composed systems with high modal density (for high frequencies) for the noise research of these 

electric machines. SEA has also been used to study the subdivision of a volume of air in a 

vehicle enclosure into SEA subsystems (Fahy, 2004). The study simply tried to suggest that the 

subdivision of air space into SEA subsystems was acceptable in cases where the sound field may 

be reasonably considered to be approximate the ideal diffuse field. 

Burkett (2007) dealt with the prediction of interior noise levels in a cabin of a freightliner where 

SEA was used to simulate noise levels. The impacts of different types of absorptive materials, 

main paths and flaking paths were studied. The engineers focused on the control of flanking 

paths which resulted in significant reduction of noise as compared to the earlier designs of the 

cabin. It was claimed to be the quietest cabin in North America.  

 

2.6  ASHRAE References 

To predict the sound transmission loss through air duct, the theoretical results in ASHRAE 

Handbook: HVAC Application (2011) based on Lilly’s theory (1987) has been widely used for 

various cross-sectional duct geometry at octave band frequencies.  

                                                                     
  

 
                                           (2.1) 
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where       is the transmission loss of breakout noise,         is the sound power level inside 

the air duct,         is the sound power level radiated out through the surface duct walls,   is the 

effective surface area and   is the cross sectional area of the duct.   

                                                                             ,                                      (2.2) 

   is the effective length of the duct given as, 

                                                                  
  

   

       
                                                                    (2.3) 

where, 

                                                                       
 

                                                                   (2.4) 

  is the duct attenuation factor. 

The ducts used in the study are of the material “galvanized steel” of various gages (i.e. duct 

thickness). The confining feature of the listed TL data in ASHRAE is that it is limited to certain 

dimensions and gages only. The duct material limits itself only to galvanized steel. This in turn 

limits the estimation of TL to only certain duct configurations.  

The thickness of the sheet metal for galvanized steel quantified by the different gages are cited 

from ASHRAE Handbook: Systems and Equipment (2012).     

 

2.7  Summary     

There has been substantive research in the field sound transmission for breakout noise through 

air ducts. These researches have suggested improved ways of predicting results, but it still poses 
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a challenge for computation. The SEA over the years has emerged to be a better alternative and 

computation efficiency to conventional deterministic methods to predict the behavior of the 

structure at relatively high frequencies. Researches in improving the level of prediction of SEA 

have been undertaken over the period of time. Methods of validating SEA also have been 

successfully carried out. The various parameters involved in SEA approach are being improvised 

which enable the analysis to get more accurate results thus reducing the minimal existing 

discrepancies. The SEA application has also gained popularity in various sectors other than civil 

structures like appliances, motor industry, etc. Hence, by studying the practical background of 

SEA, an attempt can be made in extending its validity to problems involving the prediction of the 

sound transmission for air ducts, which have not been addressed so far.  
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Chapter 3: Methodology   
 

3.1  Duct Model 

To evaluate the Statistical Energy Analysis (SEA) in prediction of the Transmission Loss (TL) of 

breakout noise through the air duct walls, a random configuration of the duct for listed 

theoretical data in the ASHRAE Handbook: HVAC Applications (2011) is selected in the present 

study. The predicted transmission losses are then compared with the theoretical data (ASHRAE, 

2011) at octave band frequencies as listed.  

The model chosen for numerical analysis is an unlined rectangular duct of cross section 0.305 m 

x 0. 610 m, the length being 6.1 m. The rectangular duct model consists of two pairs of duct wall 

panels in dimensions of 0.305 m x 6.1 m and 0.610 m x 6.1 m, respectively. It is open at both 

ends of the cross sections 0.305 m x 0.610 m as shown in the Figure 3.1. The material of the duct 

wall panels are composed of 24 gage galvanized steel having the modulus of elasticity E = 210 

GPa, Poisson’s ratio μ = 0.3125, and density ρ = 7800 kg/m
3
. The thickness of the duct wall 

panel (24 gage), h, is 0.7 x 10
-3

 m (ASHRAE, 2012).  

While applying the SEA, the model is divided into individual subsystems with an assumption of 

diffuse energy in each subsystem. The air duct is divided in six subsystems: four duct walls, the 

internal air cavity and the external air space.  The numbering of subsystems is established in the 

direction of flow of energy from the internal air cavity into the walls of the air duct and 

transmitted to the external space as shown in Figure 3.2. The internal air cavity with the 

dimension 0.610 m x 0.305 m x 6.1 m is considered as Subsystem 1. The two duct-wall panels 

(plates) with dimensions 0.305 m x 6.1 m x 0.7 mm are considered to be Subsystem 2 and 

Subsystem 4, which are denoted by plate i and k, respectively. The other two duct-wall panels 
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(plates) with dimensions 0.610 m x 6.1 m x 0.7 mm are considered to be Subsystem 3 and 

Subsystem 5, which are denoted by plates j and l, respectively. The external air space is 

considered to be Subsystem 6. The sound transmission loss is evaluated by the difference 

between the acoustic energies inside the internal air cavity and external air space.  

 

 

 

 

6.1 m 

 0.305 m 

0.610 m 

 Open Ends 

Figure 3.1 - Simple geometry of the duct model. 
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Figure 3.2 shows the schematic representation of the SEA model and the interaction of the 

subsystems within themselves. The arrows pointing inwards and outwards of a system represent 

the energy received into and energy lost from the corresponding subsystem, respectively. The 

arrows pointing between the subsystems show the paths by which energy is transmitted from one 
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Figure 3.2 - Schematic representation of exchange of power within subsystems. 
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subsystem to another. Therefore, W12 indicates the energy flow from Subsystem 1 to Subsystem 

2. Likewise, W21 indicates the energy flow from Subsystem 2 to Subsystem 1.  

It is observed that Subsystem 1, which is the internal air cavity, transmits energy to and receives 

energy from the four other subsystems (i.e. Subsystems 2, 3, 4 and 5). As mentioned earlier (in 

Section 1.2) regarding the exchange of energy between the subsystems, it is observed that some 

subsystems do not interact (i.e. energy exchange) with each other. As seen in Figure 3.2, there is 

no exchange of energy between Subsystems 2 and Subsystem 4, and also, between Subsystem 3 

and Subsystem 5. This is because the subsystems (plates in our model) are not directly 

connected, hence the effect of any coupling between them can be neglected. It is further 

observed that Subsystems 2, 3, 4 and 5 (i.e. all duct wall panels) transfer energy to Subsystem 6 

which is an infinitely large external space. Due to this large external space, there is negligible 

energy return from Subsystem 6 to Subsystem 2, 3, 4 and 5. However, there will be a non-

resonant path discussed in Section 3.10, which could transfer energy from Subsystem 6 to 

Subsystem 1 and vice versa. 

The noise source inside the duct cavity generates an internal sound field, which in turn excites 

vibration of duct walls. The vibrating walls will then radiate noise into the area outside the duct 

(external space). The duct walls (i.e. the plates in the model) are assumed to be flexible, 

homogeneous, isotropic, thin and of uniform thickness. Due to the thin structures of the duct 

walls, the effect of shear stress deformation and rotational inertia are negligible. Only bending 

waves are considered in the analysis. The fundamental resonance frequency of the plates is 

smaller than the lowest natural frequency of the enclosed volume. The first three lowest axial 

resonance frequencies for the plates with dimension 0.305 m x 6.1 m are 0.046 Hz, 18.66 Hz and 

18.71 Hz and for plates with dimension 0.610 m x 6.1 m are 0.046 Hz, 4.67 Hz and 4.71 Hz, 
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respectively. The first three lowest axial resonance frequencies for the cavity (enclosed volume) 

are 281.15 Hz, 562.3 Hz and 628.67 Hz respectively.  

 

3.2  Critical Frequency and the First Resonant Frequency of the Duct Wall Panels 

The frequency at which the projected airborne wavelength coincides with the solid-borne 

wavelength at a certain angle of incidence, the frequency can be termed as a critical frequency. 

The critical frequency is an instrument in determining the radiation coefficient (discussed in 

Section 3.5) at the driving frequency from the wall panels in SEA. It is also useful in studying 

the response of the system for resonant and non-resonant parts ( discussed later in Section 3.10) 

because generally the nature of these responses change when close to, and over the critical 

frequency (Craik, 1996). The critical frequency is given as 

                                                            
           

     
     ,                                                    (3.1)     

where c denotes the speed of sound in air and ρs is the surface density of the duct. The Poisson’s 

ratio of the duct material is given by μ and the modulus of elasticity of the duct material is 

represented by E, while h is the thickness of the duct. 

The first vibration resonance frequency of the duct wall can be calculated as follows (SS-

EN12354-1, 2000), 

                                                             
  

   
 

 

  
  

 

  
     ,                                                 (3.2) 

where l1 and l2 are the dimensions of the duct wall panel. 
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3.3  Internal Loss Factor of the Enclosed Air Volume Inside the Duct 

The internal loss factor is the result of energy losses caused due to internal losses (i.e. 

transformation of heat) or radiation. It thus amounts to the fraction of energy lost as heat in one 

radian cycle of excitation. The Subsystem 1 comprising of the enclosed air volume has a 

dominance of viscous loss and thermal loss at the walls. The internal loss factor can be 

calculated by (Eichler, 1965), 

                                                      
    

   
    ,                                           (3.3) 

where the total internal surface area of the cavity is represented by Sa, while ω denotes the 

angular frequency (i.e. 2πf ). The volume of air cavity inside the duct is V. The acoustic 

absorption coefficient of the wall surface is represented by γ.  For our case, no absorption 

material is present inside the duct. For the case at room temperature, the acoustic absorption 

coefficient can be set by (Kutruff, 1979)  

                                                                         .                                                       (3.4) 

 

3.4  Dissipation Loss Factors of the Duct Wall Panels (or called Plates) 

The dissipation loss factor is the measure of the loss-rate of energy of a mode of oscillation in a 

dissipative system. In the case below, the dissipation loss factor is evaluated by summing the 

structural damping and radiation loss factor. The structural damping dominates the dissipation 

loss factor at octave bands below the critical frequency, while the radiation loss dominates at 

frequencies above the critical frequency (Ming and Pan, 2004). The dissipation loss factors of a 

plate can be found by,  
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    (3.5) 

  

3.5  Radiation Coefficients for the Duct Walls Panels (or called Plates)  

Sound radiation from a rectangular plate to fluid is of paramount importance for sound 

transmission. The radiation coefficient is an essential parameter in evaluating the coupling loss 

factor between the plate and the fluid (Section 3.6). There can be any medium surrounding the 

plate, such as air, water or any other fluid or gas. The interaction between the plates and its 

surrounding medium can be described by the radiation coefficient. The radiation coefficient is 

useful in calculating the coupling loss factor (Section 3.6) from the plate to the cavity in our 

study. There are two frequencies that are vital for the calculation of the radiation factors: (1) the 

frequency of the first mode of the plate and (2) the critical frequency of the plate. 

Ver (1971) defines radiation efficiency for all possible cases of the radiation factors σ.   For the 

first case, where the driving frequency is less than the first resonance frequency f11, i.e. f < f11  

 

                                                       
   

  
   .                                                                         (3.6) 

For  f11 < f < fe ,                             

                                                     
   

    

 

  
    .                                                            (3.7) 
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For fe < f < fc , 

                                      
   

       
 

         
   

   
    

      
 
 

  .                                                   (3.8) 

For f = fc ,  

                                                                                       
    

 
     .                                                                                              (3.9) 

For f > fc , 

                                                          
  

 
 
 

 

 
     .                                                          (3.10)  

For the above equations, fe = 3c/Pl; the speed of sound is denoted by c; Pl is the perimeter the 

plate; Sl is the area of the plate; B is the bending stiffness; m” is mass per unit area of the plate; 

and 

    
 

  
  . (3.11) 

 

3.6  Coupling Loss Factor 

The coupling loss factor is an essential parameter in SEA. It is associated with the energy 

transmitted from one subsystem to another. The formulation of coupling loss factors depends on 

the type of junctions and the properties of the subsystems. It can be best defined as the fraction 

of energy transmitted from one subsystem to another in one radian cycle. Two types of coupling 
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loss factors will be discussed in this section comprising of coupling loss factor from a plate to an 

internal air space and coupling loss factor between two plates.  

The coupling loss factor from a plate to the internal air volume can be divided into two cases 

(Price and Crocker, 1970). (1) If the evaluated frequency is less than the critical frequency (i.e. f 

< fc ), the coupling loss factor can be found by, 

                                                      
      

    

     ,                                                 (3.12) 

where ηia is the coupling loss factor between the plate i and the air cavity a. ρ0 is the density of 

air. σi is the radiation coefficient of plate i and    
is the surface mass density of plate i. If the 

forcing frequency is greater than or equal to the critical frequency (i.e. f ≥ fc ,), the coupling loss 

factor is given by,  

                                                         
     

    

   .                                                  (3.13) 

The coupling loss factors from the internal air volume and the plate can also be obtained from 

the consistency relationship that will be discussed later in Section 3.8. 

The coupling loss factor between the plates can be determined by the method shown in Bies 

(1980). Since the plates have the same material properties and same thickness, the density and 

longitudinal wave speed of the plates are the same and the formulation of the coupling loss factor 

between plates can be simplified as,  

                                                                 
           

   
    ,                                                  (3.14) 
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where    is the bending wave speed of the wall. Bending wave for the duct wall panel is 

responsible for sound radiation through the duct wall as it deforms the structure transversely as 

vibration propagates. The Lij represents the coupling length or the length of the junction 

between the plates. In the case above, it represents the junction length between plate i and plate j. 

Si denotes the surface area of the duct wall panel i. 

The bending wave speed of the plate can be given as follows, (Craik, 1996) 

                                                                    
      

  
 

 

 
     ,                                               (3.15) 

where    is the surface mass density of the plate  and B is the bending stiffness which can be 

estimated based on the elastic modulus and the moment of inertia of the plate as, 

                                                                     
   

        
     .                                                 (3.16) 

 

3.7  Modal Density 

In SEA, acoustic and vibration modes play a vital part. They occur when the multiple of half 

wavelengths and the dimensions of the subsystem coincide. This results in the increase in wave 

amplitude between the waves travelling in the subsystem due to constructive interference.  

Modes within the subsystem are responsible for receiving, storing and transferring the energy. 

The modal density presents the number of modes per unit frequency. It is essential in calculating 

the unknown coupling loss factor of a particular subsystem by the consistency relationship. If the 

coupling loss factors in both directions between all the subsystems in the model are known, then 

evaluating the modal density may not be a requisite. 
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In the present study, the modal density of the enclosed air volume can be given as, (Kutruff, 

1979)   

                                                 
     

  
 

   

   
 

 

  
     ,                                                   (3.17) 

where V represents the internal enclosed air volume. S is the total surface area of the plates. P 

denotes the total length of the edges. Compatible with the geometry of the plates, the modal 

density of the plate i is defined by (Kutruff, 1979), 

                                                                 
    

   
     ,                                                             (3.18) 

where cL represents the longitudinal wave speed on the plate.    is the total surface area of the 

plate i. The longitudinal waves play an important part in the sound transmission, as they are 

dominant in the fluid medium that is air in the present study. The longitudinal wave speed can be 

evaluated as follows (Craik, 1996),                                               

                                                            
 

       
     .                                                        (3.19)  

Similarly, the modal densities for plate j, k and l can also be estimated as, 

                               
    

   
              

    

   
             

    

   
.                              (3.20) 

 

3.8  Consistency Relationship 

The modal density is useful in finding the coupling loss factor of an unknown subsystem. This 

can be achieved by applying the consistency relationship. This relationship is established 
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between two subsystems with their modal densities and corresponding coupling loss factors. The 

application of consistency relationship can lower the computational time and memory usage. As 

in the case below, the coupling loss factors between plate i and plate j can be related by their 

respective modal densities (Craik, 1996),  

                                                                             .                                                         (3.21) 

Similarly the coupling loss factors for all the connected subsystem can be found with the 

consistency relationship and their modal densities using Equation (3.21). 

 

3.9  Evaluating the Total Loss Factors 

The total loss factor gives the measure of the total energy lost in each radian cycle due to all  

mechanisms of transmission. The total loss factor amounts to the sum of all coupling loss factors 

from the one subsystem to all the other connected subsystems and the internal loss factor. It can 

also be described as system’s damping (Craik,1996) and can be expressed as, 

                                                                         
 
         ,                                            (3.22) 

where t represents the number of subsystems. 

 

3.10  Non-Resonant Coupling Loss Factor 

The SEA is chiefly focused on calculating the responses for resonant transmission between 

subsystems. The basic assumption of the SEA model is that the energy in each subsystem is 

contained in the resonant modes so that the energy is proportional to the damping. However, the 

response of an element is sometimes not proportional to the damping. In this case, the excited 
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behavior is non-resonant. For coupling between two subsystems separated by a plate or a wall, 

when there is a transmission through the plate at frequency below the resonant frequency of the 

plate, the transmission can be termed as non-resonant transmission. The non-resonant coupling 

loss factor between the internal air cavity and the external space can be given as (Craik, 1996), 

                                                                 
       

  
  ,                                                          (3.23) 

where    is the total surface area of the plates and V is the internal air volume. The transmission 

coefficient is represented by τ. In general, the transmission coefficient can be calculated by 

knowing the sound reduction index (Craik, 1996), 

                                                                     
 

 
    ,                                                        (3.24) 

where R represents the sound reduction index. This non-resonant sound reduction index can be 

calculated shown by Beranek and Ver (1992), 

                                                                       .                                                     (3.25) 

 

3.11  Evaluating the Sound Power Levels   

The power flow between two subsystems is the product of energy, angular frequency and the 

coupling loss factor. The power flow from one subsystem to another, i to j, can be represented as,  

                                                                           ,                                                          (3.26) 

where Ei  represents energy in subsystem i. 
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The mass of the plates m, play an important role in order to evaluate the average vibrational 

velocity v, which is important in estimating the sound power radiate by the resonant modes of the 

duct wall and can be expressed as (Norton, 1999)  

                                                                         ,                                                              (3.27) 

where Vp is the volume of the plate.  

The average vibration velocity can be then calculated by (Norton, 1999), 

                                                                  
 

 
    ,                                                              (3.28) 

where E is the average vibration energy of the plate. The sound power of the internal sound field 

can be computed by, 

                                                                   .                                                                 (3.29) 

The resonant sound power radiated by each wall of the air duct can be expressed as (Norton, 

1999), 

                                                                    
    .                                                           (3.30) 

where             
  are the radiation coefficient, surface area and the vibrational velocity of plate 

i respectively. 

The non-resonant sound power radiated by the non-resonant modes of the duct wall panel can be 

represented by, 

                                                                      .                                                                (3.31) 
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The total sound power radiated from the enclosure can be shown as, 

                                                                 .                                                          (3.32) 

The general power balance equation for t subsystems can be formed as, 

                                              
                                                                (3.33a) 

                                                             
 
                                                        (3.33) 

Assuming the power input as 1W, Equation 3.33 can be expressed in matrix form as, 

                                 

 
 
 
 
 

                  
    

    

    

  

    

 

    

  

    

 
    

  

    

 
    

                
 
 
 
 

 
 
 
 
 
   

   

   

   

    
 
 
 
 

 

 
 
 
 
 
 
 
 
 
  
 
 
 
 

         .                                          (3.34) 

The zero elements in the first left matrix representing the loss factors are the un-connected 

subsystems. 

 

3.12  Calculating the Transmission Loss through duct walls  

Transmission loss (TL) is the ratio of sound power incident on a partition to the transmitted 

sound power through the partition. TL can be influenced by the duct features (i.e. size, thickness 

and shape). The higher the transmission loss of the duct wall panels, lower is the sound energy 

passing through the duct wall. The point of interest in this study is to find the breakout sound 

transmission from ducts, which is the sound transmitted through the duct wall and then radiated 

from the exterior surface of the duct wall.  
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The theoretical results in ASHRAE Handbook: HVAC Applications (ASHRAE, 2011) is used to 

validate the results using SEA in our study. The transmission loss is evaluated as follows, 

                                                              
  

 
    ,                                           (3.35) 

where        is the sound power level inside the air duct.         is the sound power level 

radiated from the outside surface of the duct walls. S
*
 is the effective surface area of the duct, 

while A is the cross sectional area of the duct. The effective surface area for the rectangular duct 

can be calculated by, 

                                                                                         ,                        (3.36) 

Where c/s is the duct cross section, L* is the effective length of the duct which can be then 

calculated as, 

                                                                       
  

   

       
    ,                                                        (3.37) 

where  

                                                                           
 

       .                                                     (3.38) 

α is the duct attenuation rate. The duct attenuation values for the lightest gages can be extracted 

from the Table 48.16 of ASHRAE Handbook: HVAC Applications (ASHRAE, 2011).  
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3.13  Calculating the Cutoff Frequency 

The cut-off frequency for the waveguide with rectangular cross section can be determined by 

Kinsler’s (2000) formulation. It is useful in order to probe the lowest natural frequencies of the 

enclosed volume to validate our assumption that the fundamental resonance frequency of the 

plates is smaller than the lowest natural frequency of the enclosed volume. The equation for 

calculation of the cutoff frequencies of the duct discussed in Section 3.1 is expressed in this 

section. 

 

 

The wavenumber for x and y axes are: 

                                                       
  

  
                                                                     (3.39)      

                                                       
  

  
                                                                     (3.40) 

Figure 3.3 - Waveguide with dimension Lx and Ly (Kinsler, 2000). 
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where kxp and kyq are the components of the wave number in x and y direction respectively. p and 

q are integer and the mode numbers for x and y axes, respectively. Lx and Ly represent the 

dimensions of the plate. The transverse component of the propagation vector for rectangular 

cross-section duct can be shown as follows, 

                                                                   
     

  
 

 ,                                                     (3.41) 

The cut-off frequency can be then found, 

                                                                  
    

  
 .                                                           (3.42) 

 

3.14  Summary 

The procedure employed by SEA to predict the transmission loss (TL) of breakout noise through 

air duct walls involves the evaluation of various parameters. First of all, the ductwork is divided 

into six subsystems: four walls (plates), one internal cavity and an external space. By making the 

appropriate assumptions, the loss factors are described. These involve internal loss factor for 

internal air volume, dissipation loss factors for the plates, coupling loss factor between the 

subsystems and total loss factor for each subsystem. In the process some frequencies (such as the 

critical frequency, the resonance frequency of the duct wall panels and the cut-off frequency of 

the waveguide) are also discussed to meet certain requirements and assumptions. Intrinsic 

parameters like radiation coefficients for coupling loss factors within duct walls and internal air 

volume, transmission coefficient for non-resonant coupling loss factor and modal densities to 

account for the remaining unknown coupling loss factors are also identified. These loss factors 

are then introduced in the power balance equation and the energy radiated from duct walls is 
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estimated. Thus, the acoustic power coming out of the ductwork is used to predict the 

transmission loss of breakout noise through the duct wall by employing the general formulation 

transmission loss (TL).  
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Chapter 4: Results and Analysis 
 

4.1  Initially Predicted Results by SEA 

Applying the preceding methodology discussed in Chapter 3, the sound transmission loss of the 

air duct for the breakout noise is predicted by statistical energy analysis (SEA) with the aid of 

MATLAB computer software (Appendix A). The results are then compared with the theoretical 

results in Chapter 48 of ASHRAE Handbook: HVAC Applications (ASHRAE, 2011) for 

evaluation. As stated in Section 3.1, duct of dimension 0.305 m x 0.610 m x 6.1 m is considered 

for the present study. The sound transmission loss (TL) based on the ASHRAE’s theoretical 

results (ASHRAE, 2011) for the given duct size have been listed in Table 4.1 (column 2). The 

TL of breakout noise is stated at octave band frequencies. 

The SEA method is simulated to yield the predicted transmission loss results in order to get an 

agreement with the theoretical results. The predicted outputs have been plotted graphically as 

seen in Figure 4.1. There is a good agreement of predicted values with the theoretical results at 

frequencies between 250 Hz and 2000 Hz. The agreement is also recorded at the lower 

frequencies (63 Hz and 125 Hz). However, the theoretical TL is higher than the predicted TL at 

frequencies above 2000 Hz. As shown in Figure 4.1, the theoretical values are significantly 

higher at 4000 Hz and 8000 Hz. These discrepancies at the higher frequencies defeat the purpose 

of the SEA as its original claim is to be accurate at higher frequencies (Heckl, 1994).  
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The numbers obtained by predicted (SEA) TL at the octave band frequencies are listed in Table 

4.1. The theoretical TL values (ASHRAE, 2011) are also listed for comparison. The 

corresponding differences in the theoretical values and the predicted values have been shown. At 

frequencies 63 Hz to 2000 Hz, the deviations noticed between the predicted and theoretical are 

below 1 dB. The predicted results and the theoretical results at 63 to 2000 Hz follow a mass  3 

dB increase in TL per doubling of frequency. The deviations of the predicted TLs are enlarged at 

4 and 8 kHz, which record deviations of 3.3 dB and 5.2 dB, respectively. The theoretical TL 

shows a steep increase at above 4 kHz in comparison with the predicted. 
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Figure 4.1 - Transmission Loss (TL) predicted by SEA and theoretical TL by ASHRAE (2011) for 

duct 0.305 m x 0.610 m x 6.1 m. 



www.manaraa.com

48 

 

Table 4.1 - Theoretical TL (ASHRAE, 2011) and the initially predicted TL using SEA for a duct 0.305 m 

x 0.610 m x 6.1 m. 

 

 

4.2  Calculating the Transmission Loss using Cummings Equations (Cummings, 

1985) 

The phenomenon of increase in theoretical TL (ASHRAE, 2011) at higher frequencies may be 

explained by Cummings’ theory (1985). It states that, at sufficiently high frequencies, the duct 

wall response to an internal plane wave is essentially given by the mass law.  

The expression used to estimate the TL of a rectangular duct at lower frequencies where plane 

acoustic mode propagates within the duct can be stated as (Cummings, 1985), 

                                                             
    

 

  
       

      ,                                               (4.1) 

where a and b are the cross sectional dimensions of the rectangular duct. The above formulation 

in Equation 4.1 can be used to estimate the TL of the rectangular duct at frequencies where only 

plane acoustic mode propagates within the duct. Hence it poses certain limitations. It is only 

Frequency (Hz) ASHRAE (dB) SEA (dB) Deviation (dB) 

63 19 18.4 0.6 

125 22 22.1 -0.1 

250 25 25.3 -0.3 

500 28 28.5 -0.5 

1000 31 31.5 -0.5 

2000 35 34.6 0.4 

4000 41 37.7 3.3 

8000 45 39.8 5.2 
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valid up to         Hz where a and b are in meters (the validity of the formulation for the 

current duct dimension is 1421.17 Hz). Above this frequency, more than about ten acoustic 

modes can propagate in the duct, which then leads to “multimodal” transmission. To overcome 

this, Cummings (1985) found expression for the TL using mass law (i.e. 6 dB increase every 

doubling for frequency) of higher order duct modes by summing the contributions from all 

propagating modes at any frequency. It can be stated that the statistical estimates of the internal 

and radiated sound power can be made by summing the contributions from all propagating 

modes at any frequency.  The resulting TL formula was (Cummings, 1985), 

                                                                    
  

   

     
  

 ,                                                (4.2) 

While the Equation 4.1 resulted in 3 dB/octave increase of TL for each octave band frequency, 

the Equation 4.2 results in 6 dB/octave increase of TL for each octave band frequency.  

When the above two (i.e. Equation 4.1 and Equation 4.2) formulations were applied to our duct 

model as shown in Figure 4.2, the Equation 4.1 gave close predictions up to about 2 kHz. At 

frequencies above 2 kHz the multimodal model using Equation 4.2 with 6 dB/octave band 

increase of TL may show promising results and may have a better agreement with the theoretical 

results (ASHRAE, 2011).  Figure 4.2 exhibits the behavior of plane acoustic mode propagation 

by applying Equation 4.1 and the higher order mode application using Equation 4.2. The 

magnitudes for Equation 4.1 and 4.2 have been listed for the respective octave bands in Table 4.2  
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Table 4.2 - TL for plane acoustic mode and higher order mode propagation for duct 0.305 m x 0.610 m x 

6.1 m. 

Frequency (Hz) ASHRAE (dB) Equation 4.1 TL (dB) Equation 4.2 TL (dB) 

63 19 20.1 5.6 

125 22 23.1 11.5 

250 25 26.1 17.6 

500 28 29.1 23.6 

1000 31 32.1 29.6 

2000 35 35.1 35.6 

4000 41 38.2 41.6 

8000 45 41.2 47.7 
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Figure 4.2 - Transmission loss with plane acoustic mode (Equation 4.1) and higher order mode 

(Equation 4.2) for duct 0.305 m x 0.610 m x 6.1 m. 
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Table 4.2 compares the values of the theoretical TL (ASHRAE, 2011) with the predicted TL 

obtained by Equations 4.1 and 4.2 respectively. It can be clearly seen that the results based on the 

plane wave mode model using Equation 4.1 which show an increase in 3 dB/octave. The higher 

order modes model using Equation 4.2 follow the mass law showing an increase of 6 dB/octave. 

The theoretical data (ASHRAE, 2011) is in close agreement with plane acoustic mode 

propagation (Equation 4.1) from frequencies 63 Hz to 2000 Hz, while the higher order mode 

propagation (Equation 4.2) comes in close agreement at frequencies 4000 Hz and 8000 Hz with 

the theoretical results.   

 

4.3  Evaluating  the Correction Factor 

As shown in Figure 4.2, the predicted TL using the plane acoustic mode model intersect with that 

using the higher order mode model at a particular frequency, which we term as a “transition 

frequency” in the present study. Above this frequency, the transmission loss in the duct would be 

dominated by the higher order mode. We find this transition frequency by equating Equations 4.1 

and 4.2  

                                                        
    

 

  
       

    
  

   

     
  

   .                                                (4.3) 

The formulation for the transition frequency is shown below in Equation 4.4, 

                                                                
   

       
    ,                                                           (4.4) 

where ft  is the transition frequency. 
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The purpose of calculating the transition frequency is to be able to apply a correction factor from 

a point where higher order modes propagation is dominated. Hence, we propose to apply a 

correction factor above the transition frequency to account for the higher order mode 

propagation. The correction factor is based on the difference between Cummings’ TL equations 

for higher order modes (Equation 4.2) and for plane acoustic wave mode (Equation 4.1) as, 

                                                                   
        

   
    .                                  (4.5) 

Therefore, for     , the transmission loss will be, 

                                                                   
        

   
 ,        (4.6) 

where      is the transmission loss above the transition frequency and    can be found by 

Equation 3.35. The transition frequency    for our duct dimension is 1.78 kHz. The revised 

formulation of TL in Equation 4.6 has a good agreement at the higher order mode propagation as 

shown in the following section. 
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4.4  Improvement in Prediction of Transmission Loss (TL) using Equation 4.6. 

  

 

Figure 4.3 shows the breakout TL for our duct after applying the correction factor above the 

transition frequency. As seen, there is a close agreement after accounting for the higher order 

modes at the frequencies above transition frequency, specifically at frequencies 2000 Hz, 4000 

Hz and 8000 Hz. As the higher order modes propagate, the predicted TL follows the same nature 

of the theoretical TL (ASHRAE, 2011) and is within 2 dB of deviation.   

Table 4.3 shows the magnitude of the breakout TL obtained after applying the correction factor 

at frequencies above the transition frequency. By comparing it with earlier results listed in Table 

4.2, the deviations at the high frequencies 2000 Hz, 4000 Hz and 8000 Hz are reduced 

significantly. The deviations from the improved predicted results are 0.1, 0.1 and 1.3 dB for 

frequencies 2000, 4000 and 8000 Hz respectively, as compared with 0.4, 3.3 and 5.2 dB in Table 
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Figure 4.3 - Predicted TL with correction factor from Equation 4.5 above the transition frequency and 

the theoretical TL for duct 0.305 m x 0.610 m x 6.1 m. 
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4.2 using the original equation. The newly predicted results are well within 2 dB of agreement 

with the theoretical results. 

 

Table 4.3 - Predicted TL values (with revised formulation) and theoretical TL values for duct 0.305 m x 

0.610 m x 6.1 m. 

 

 

4.5  Contributions of Resonant and Non-Resonant Responses to the TL of the Duct Walls 

The spectrum of analysis is further stretched to study the TL contributed by the resonant and 

non–resonant responses. The excitation caused by the acoustic waves and the total vibration 

energy can be divided into two parts. The first is the forced response, also called the non-

resonant response, which adds to the non-resonant sound transmission. The second part is 

generated from the free response acting in the form of resonant modes and inducing resonant 

sound transmission (Lei et al, 2011). The resonant response is by the structural modes caused by 

the interaction of the free bending waves with the boundaries of the structure while the non-

Frequency (Hz) ASHRAE (dB) SEA (dB) Deviation 

63 19 18.4 0.6 

125 22 22.1 -0.1 

250 25 25.3 -0.3 

500 28 28.5 -0.5 

1000 31 31.5 -0.5 

2000 35 35.1 -0.1 

4000 41 41.1 -0.1 

8000 45 46.3 -1.3 
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resonant response is due to the trace wave (moving along the surface of the duct walls) generated 

in the panel by the incident acoustic excitation field. 

 

 

  

 Figure 4.4 shows the transmission losses by the resonant response and the non-resonant response 

along with the total transmission loss that is the sum of the transmission losses contributed from 

the resonant and non-resonant parts. As shown in Figure 4.4, the transmission loss contributed by 

the resonant response is higher than the non-resonant response throughout the octave bands. 

Hence, it can be commented that the power transmitted by the resonant response is less than that 

of the non-resonant response at the above given frequency range, which will be shown in the 

preceding section (Section 4.5).  The values of the predicted resonant TL and non-resonant TL 

have been listed in Table 4.4. The difference of TL contribution from the resonant over the non-

resonant is around 2 to 4 dB over the octave band center frequencies. 
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Figure 4.4 - Predicted resonant TL and non-resonant TL for duct 0.305 m x 0.610 m x 6.1 m. 
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Table 4.4 - Predicted Resonant and Non-Resonant response values duct 0.305 m x 0.610 m x 6.1 m. 

 

 

4.6  Sound Power Level Transmitted Out of the Air Duct by Resonant and Non-Resonant 

Responses. 

The predicted sound power level coming out of the air duct will be the contibutions by the 

resonant sound power level and the non-resonant sound power level. 

                                                                                 

                                                                                                                                                    (4.7)                                                                      

Frequency (Hz) Resonant TL (dB) Non-Resonant TL (dB) Total TL (dB) 

63 23.8 19.9 18.4 

125 26.3 24.2 22.1 

250 29.0 27.7 25.3 

500 32.1 31.0 28.5 

1000 35.3 33.8 31.5 

2000 39.3 37.2 35.1 

4000 45.3 43.2 41.1 

8000 49.5 49.2 46.3 
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 As shown in Figure 4.5, the non-resonant response dominates the acoustic energy transmitted 

through panels in our case, which results in the Sound Power Level (SWL) out due to the non-

resonant response to be more dominant than the resonant response. Thus, the non-resonant 

response is responsible for major SWL transmission from the duct panels as compared to the 

resonant response.  

Table 4.5 shows the magnitudes of SWL transmitted through the air duct walls by the resonant 

and non-resonant responses. The non-resonant mechanism dominates SWL transmission over the 

octave band frequency under study. The dominating difference varies from as low as 0.2 dB to as 

high as 3.9 dB at different center frequencies of the octave bands.  
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Figure 4.5 - Predicted resonant and non-resonant transmitted Sound Power Level (SWL) for duct 0.305 m 

x 0.610 m x 6.1m. 
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Table 4.5 - Predicted values for resonant and non-resonant transmitted SWL for duct 0.305 m x 0.610 m x 

6.1 m. 

 

 

4.7  Resonant and Non-Resonant Responses Near to and Above Critical Frequency  

In general, the transmitted sound power level by resonant response is very low at frequencies 

below the critical frequency of the duct panel and is high at the frequencies near and above the 

critical frequency. This is because the radiation efficiency linked to resonant response is small 

below the critical frequency (Renji and Nair, 2001). This results from the wavelength of resonant 

response being shorter than that of sound in air; hence the resonance response is an inefficient 

radiator (Lei et al, 2011). However, the sound radiation from resonant response gets dominant at 

frequencies near and above critical frequency.  

For the chosen duct dimension, this theory can be verified by evaluating the resonant and non-

resonant TL near and above the critical frequency. The critical frequency of the duct panels is 

16.9 kHz.  

Frequency (Hz) Resonant SWL (dB) Non-Resonant SWL (dB) Total SWL (dB) 

63 111.7 115.6 117.1 

125 110.5 112.7 114.7 

250 108.4 109.6 112.1 

500 105.5 106.6 109.1 

1000 102.1 103.6 105.9 

2000 98.6 100.6 102.7 

4000 95.5 97.6 99.7 

8000 94.4 94.6 97.5 
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In Figure 4.6, high TL of the breakout noise due to the resonant response can be observed up to a 

certain frequency, after which it shows a decline and falls significantly below that of the non-

resonant response. On the other hand, the TL due to the non-resonant response at the frequencies 

below the critical frequencies is lower than that due to resonant response. High TL due to non-

resonant response can be observed near and above the critical frequency. 

The same concept in terms of sound power level transmitted out above the critical frequency can 

be explained by the dominance of non-resonant response below the critical frequency and then 

being dominated by the resonant response at higher frequencies as shown in Figure 4.7. Hence it 

can be said that generally, the sound power level transmission is dominated by the non-resonant 

response below the critical frequency. As frequency approaches the critical frequency, there is an 

increase in radiation from the resonant response thereby dominating the acoustic power 

transmission.  
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Figure 4.6 - Predicted resonant and non-resonant TL extended to the frequencies above the critical 

frequency for duct 0.305 m x 0.610 m x 6.1 m. 
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To further evaluate our SEA method, we randomly select three more dimensions with different 

each with different gages and covering the maximum and minimum (0.305 m and 2.44 m 

respectively) cross sectional dimension stated in the ASHRAE Handbook: HVAC Applications 

(ASHRAE, 2011) and check the agreement between the predicted results and the theoretical 

results. The transmission loss of the breakout noise for all the three duct dimensions each with 

different gages are predicted and are shown in Figures 4.8, 4.9 and 4.10 The magnitude of the 

transmission losses are listed in Tables 4.6, 4.7 and 4.8.  
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Figure 4.7 - Predicted SWL for resonant and non-resonant responses extended to the frequencies above 

the critical frequency for duct 0.305 m x 0.610 m x 6.1 m. 
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4.8  Predicted TL values for duct 0.610m x 0.610m x 6.1m 

 

 

 

Figure 4.8 shows the graphical representation of the predicted TL in comparison with theoretical 

TL for duct dimension 0.610 m x 0.610 m x 6.1 m with 22-gage (0.853 mm) duct walls.  As 

seen, the predicted TL follows close to the theoretical TL over the given frequency range. The 

numeric values have been listed in Table 4.6. The deviations are large at the lower frequencies 

(63 Hz and 125 Hz). However, from the intermediate to high frequencies (250 Hz to 8000 Hz), 

the deviations are within 2 dB. The large deviation at the lower frequency are expected as SEA 

has limitations at the lower frequencies and is predominantly meant to generate stable results at 

the higher frequencies (Sarradj, 2004).    
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Figure 4.8 - Predicted and theoretical TL for duct 0.610 m x 0.610 m x 6.1m. 
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Table 4.6 - Predicted and theoretical TL values and corresponding differences for duct 0.610 m x 0.610 m 

x 6.1 m. 

Frequency (Hz) ASHRAE (dB) SEA (dB) Deviation (dB) 

63 20 17.3 2.7 

125 23 21.0 2.0 

250 26 24.4 1.6 

500 29 27.8 1.2 

1000 32 30.9 1.1 

2000 37 35.8 1.2 

4000 43 41.7 1.3 

8000 45 46.3 -1.3 

 

 

4.9  Predicted TL values for duct 0.610m x 1.22m x 6.1m 
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Figure 4.9 - Predicted and theoretical TL for duct size 0.610 m x 1.22 m x 6.1 m. 
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Figure 4.9 shows the graphical representation of the predicted TL in comparison with theoretical 

TL for duct dimension 0.610m x 1.22m x 6.1m for 20-gage (1.066 mm) duct walls. The 

predicted TLs follow closely to the theoretical TL over the frequency range in the present study. 

The numeric values have been listed in Table 4.7. The predicted values are seen to be in 

agreement from intermediate to the high frequencies (250 Hz to 8000 Hz) within 2 dB 

deviations. 

  

 

Table 4.7 - Predicted and theoretical TL values and corresponding differences for duct 0.610 m x 1.22 m 

x 6.1 m. 

 

 

 

 

 

 

Frequency (Hz) ASHRAE (dB) SEA (dB) Deviation (dB) 

63 20 16.9 3.1 

125 23 20.9 2.1 

250 26 24.5 1.5 

500 29 28.0 1.0 

1000 31 31.6 -0.6 

2000 39 37.7 1.3 

4000 45 43.5 1.5 

8000 45 46.4 -1.4 
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4.10  Predicted TL values for duct 1.22m x 2.44 m x 6.1m 

 

 

 

 

Figure 4.10 displays the predicted and theoretical TL for cross-sectional duct dimension 1.22m x 

2.44m x 6.1m with 18-gage (1.311 mm) duct walls. Observed again is a close proximity of the 

predicted results with the theoretical results. Table 4.8 lists the values obtained for the predicted 

TLs to compare it with the theoretical TLs. The highest deviation at mid to high frequencies are 

1.9 dB at 250 and 500 Hz, which also fall below 2 dB. It can be concluded that predictions using 

SEA are close to the theoretical values. 
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Figure 4.10 - Predicted and theoretical TL for duct 1.22 m x 2.44 m x 6.1 m. 
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Table 4.8 - Predicted and theoretical TL values and corresponding differences for duct 1.22 m x 2.44 m x 

6.1 m. 

 

 

 

4.11  Predicted TL values for all other standard dimensions as listed in ASHRAE 

 

Table 4.9 – Results for duct 0.305 m x 0.305 m x 6.1 m 

Frequency (Hz) ASHRAE (dB) SEA (dB) Deviation (dB) 

63 21 19.5 1.5 

125 24 22.9 1.1 

250 27 25.7 1.3 

500 30 28.6 1.4 

1000 33 31.4 1.6 

2000 36 34.5 1.5 

4000 41 39.2 1.8 

8000 45 44.2 0.8 

 

 

 

Frequency (Hz) ASHRAE (dB) SEA (dB) Deviation (dB) 

63 19 15.0 4.0 

125 22 19.3 2.7 

250 25 23.1 1.9 

500 29 27.1 1.9 

1000 35 33.2 1.8 

2000 41 39.3 1.7 

4000 45 45.0 0.0 

8000 45 43.6 1.4 
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Table 4.10 - Results for duct 0.305 m x 1.22 m x 6.1 m 

Frequency (Hz) ASHRAE (dB) SEA (dB) Deviation (dB) 

63 19 18.0 1.0 

125 22 22.0 0.0 

250 25 25.6 -0.6 

500 28 29.0 -1.0 

1000 31 32.0 -1.0 

2000 37 37.8 -0.8 

4000 43 43.8 -0.8 

8000 45 47.8 -2.8 

 

 

 

Table 4.11 - Results for duct 0.305 m x 1.22 m x 6.1 m 

 

As seen in Tables 4.9, 4.10 and 4.11, the predicted results follow close to the theoretical values 

from the mid to high frequency (250 Hz to 8000 Hz). The observed agreement is within 3 dB.   

 

Frequency (Hz) ASHRAE (dB) SEA (dB) Deviation (dB) 

63 21 19.8 1.2 

125 24 22.3 1.7 

250 27 25.2 1.8 

500 30 28.3 1.7 

1000 35 33.1 1.9 

2000 41 39.1 1.9 

4000 45 44.7 0.3 

8000 45 42.1 2.9 
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4.12  Predicted TL Values Compared with the Experimental Data from Cummings (1983a) 

report  

The predicted values are compared with the experimental TL data for a simple rectangular cross-

sectional duct dimensions from Cummings’ Report (Cummings, 1983a).   

 

Figure 4.11 - Predicted and experimental TL for duct 0.762 m x 0.356 m x 4.57 m 

 

Seen in Figure 4.11, the predicted TL appear to be in close agreement of the experimental data 

for a simple rectangular duct dimension of 0.762 m x 0.356 m x 4.57 m for 24-gage. The 

recorded deviations from the mid to the high frequency are within 3 dB of agreement as seen in 

Table 4.12. 
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Table 4.12 - Predicted and experimental TL values and corresponding differences for duct 0.762 m x 

0.356 m x 4.57 m 

Frequency (Hz) Experimental (dB) SEA (dB) Deviation (dB) 

65 18 17.8 0.2 

125 24 20.6 3.4 

250 25 23.8 1.2 

500 29.5 26.6 2.9 

1000 31 29.7 1.3 

2000 36 34.2 1.8 

4000 41 40.2 0.8 

8000 42.7 45.5 -2.8 

 

 

 Validating SEA for another duct with dimension 0.229 m x 0.152 m x 4.57 m.  

 

 

 

Figure 4.12 - Predicted and experimental TL for duct 0.229 m x 0.152 m x 4.57 m 
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Figure 4.12 compares the predicted TL results with the experimental data for the stated duct 

dimension. The predicted results are again seen in close agreement with experimental data from 

mid to high frequency. The results are tabulated in Table 4.13 along with their corresponding 

differences. 

Table 4.13- Predicted and experimental TL values and corresponding differences for duct 0.229 m x 

0.152 m x 4.57 m 

Frequency (Hz) Experimental (dB) SEA (dB) Deviation (dB) 

65 25 20.6 4.4 

125 23 23.4 -0.4 

250 25.3 25.7 -0.4 

500 29.7 28.0 1.7 

1000 33 30.5 2.5 

2000 35 33.5 1.5 

4000 37.5 36.5 1.0 

8000 41 41.6 -0.6 

 

As shown in the Table 4.13, the predicted TL values for duct 0.229 m x 0.152 m x 4.57 m are 

within 3 dB of agreement with the experimental data.  

The SEA validation is stretched to compare the experimental data for two more different cross 

sectional dimensions which meet the criteria of a simple rectangular air duct geometry from 

Cummings Report (Cummings, 1983a). Table 4.14 and 4.15 list the predicted TL with the 

corresponding deviation from the experimental data for the given dimensions. The deviations 

observed in Table 4.14 are within 3 dB of agreement. The deviations recorded for duct 0.762 m x 

0.762 m x 4.57 m in Table 4.15 are mostly within 3 dB, with an exception at 1000 Hz which 

records 3.4 dB. 
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Table 4.14 - Results for duct 0.457 m x 0.229 m x 4.57 m 

Frequency (Hz) Experimental (dB) SEA (dB) Deviation (dB) 

65 21.9 21.0 0.9 

125 23.5 22.9 0.6 

250 26.6 25.4 1.2 

500 29.4 27.9 1.5 

1000 32.3 30.9 1.4 

2000 35.4 34.0 1.4 

4000 37.5 39.2 -1.7 

8000 41.5 44.2 -2.7 

 

 

 

 

Table 4.15 - Results for duct 0.762 m x 0.762 m x 4.57 m 

Frequency (Hz) Experimental (dB) SEA (dB) Deviation (dB) 

65 16.9 15.6 1.3 

125 22.2 18.4 3.8 

250 24.5 21.7 2.8 

500 28.9 25.5 3.4 

1000 28.9 28.3 0.6 

2000 31.5 34.1 -2.6 

4000 41 40.2 0.8 

8000 42.2 45.0 -2.8 
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4.13  Summary 

The methodology discussed in Chapter 3 is applied to predict the breakout sound transmission 

loss for chosen duct configurations from ASHRAE Handbook: HVAC Applications (ASHRAE, 

2011). The predicted results based on the methodology are then compared with the theoretical 

results (ASHRAE, 2011) for verification at octave band frequencies. Initially it is observed that 

there is close agreement of the predicted and theoretical TL results at mid frequencies only. At 

the higher frequencies, there are however discrepancies and the deviation from the predicted and 

theoretical are significant. To fix this issue, we look into Cummings earlier work on predicting 

the breakout sound transmission loss of air ducts (Cummings, 1985). The idea of plane 

propagating mode and higher order mode theory is applied to the existing methodology for 

development of correction factors. The newly predicted results with the proposed formulation 

then come in close agreement with the theoretical results i.e. with 3 dB of tolerance. To validate 

the SEA approach, we compare the predicted results with the experimental data borrowed from 

Cummings’ report (Cummings, 1983a). The predicted TL results are then compared with their 

corresponding experimental results. The SEA predicted results are observed to be consistently in 

close agreement with the experimental results from the mid to the high frequency range.  
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Chapter 5: Conclusions 
 

5.1  SEA’s Applicability 

Statistical Energy Analysis (SEA) was evaluated to predict the Sound Transmission Loss 

(Breakout noise) through an air duct of assorted dimensions which were taken from ASHRAE 

Handbook: HVAC Applications (2011). Initially, the reference held for comparing the predicted 

sound transmission loss was the theoretical data from ASHRAE Handbook: HVAC Application 

(2011) at octave band frequencies.  

When SEA was applied to predict the sound transmission loss (breakout noise) for a given duct 

dimension, the predicted results were in close agreement with the theoretical data published in 

ASHRAE (2011). The deviations between the prediction by SEA and the theoretical sound 

transmission losses are less than 3 dB with the proposed formulation. A correction factor is 

proposed to improve the prediction at higher frequencies due to the higher order modes sound 

transmission. The predicted transmission loss follows the theoretical transmission loss closely 

from mid-frequency to higher frequencies (250 Hz to 8000 Hz) with the proposed SEA 

formulation. The application of SEA is further extended to compare the predicted results with the 

experimental data from Cummings’ report (Cummings, 1983a). The agreement between the 

predicted and the experimental data was mostly observed to be within 3 dB. 

SEA proved to be effective for prediction of sound transmission loss at all given dimensions and 

maintained a close agreement with the theoretical and experimental sound transmission loss 

results published earlier. SEA affirms its idea of being reasonably accurate for mid to higher 

frequency (250 Hz to 8 kHz) wave propagation. It can be concluded that SEA is expeditiously 

capable of predicting the values for sound transmission loss of any given air duct. 
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Though the discrepancies in the predicted results from mid to high frequency range were mostly 

within 3 dB, such discrepancies could be attributed to the boundary condition of the SEA model 

which may vary with the real model or with the measurement points which may not be 

stochastically selected for the real model. 

 

5.2  Advantages of using Statistical Energy Analysis (SEA)   

In ASHRAE Handbook: HVAC Applications (ASHRAE, 2011), the Transmission Loss 

calculated for the breakout noise was restricted to certain dimensions. SEA is potentially capable 

of predicting the TL for any given dimensions of the duct and gage (thickness) of the duct walls, 

which overcome the limitation of this theoretical data provided by ASHRAE with limited 

number of configurations. Besides the advantages of variations of duct dimensions and thickness, 

SEA is also receptive to change in duct materials. In addition, SEA also extends its capability for 

predicting results at much higher frequencies which is computationally difficult by other 

numerical methods, for instance, finite element methods (Delaere et al.,1999).  

 

5.3  Limitations of Statistical Energy Analysis (SEA)  

The main limitation of SEA is that it is still not accurate to predict the sound transmission loss at 

very low frequencies. It was observed that there were significant discrepancies at the frequencies 

below 250 Hz. SEA also failed to predict modes or mode shapes. It was unable to predict the 

excitation at specific frequencies either. Moreover, the modeling approach was also incompatible 

to FEM/BEM methods 
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5.4  Future Research 

At higher frequencies for some models, the deviations of the predicted sound transmission losses 

from the theoretical results were observed to be noticeable. One of the possible reasons would be 

the non-diffuse field inside the air cavity of the duct. If the non-diffuse field can be considered 

along waveguide, the deviations may be improved.  

The waveguide was considered as an enclosed volume of air for which the formulation of modal 

density for an enclosed cavity was employed in this approach. If a more compatible modal 

density equation for the waveguide can be formulated, there may be chances of reducing the 

deviations in the predicted results from the theoretical results. 

The discrepancies of the predicted results often get enlarged at the lower frequencies where 

FEM/BEM methods prove effective. If prediction at these frequencies can be improved, SEA can 

serve as a useful tool over the entire frequency range.    

To further stretch its application, SEA can be tried on round ducts, which would require a finer 

discretization of the duct model because of its curved geometry resulting in an increased number 

of subsystems and making the problem more complex.   

 

5.5  Summary 

SEA proved to be successful in predicting the sound transmission loss for the breakout noise 

through the rectangular ducts. The predicted (SEA) results were in close agreement with the 

theoretical (ASHRAE, 2011) results and experimental data (Cummings, 1983a) mostly within 3 

dB of deviation from the mid to high frequency range (250 Hz to 8 kHz). At the lower 

frequencies (63 Hz and 125 Hz), though, the discrepancies were significant for some models, 



www.manaraa.com

75 

 

SEA still served as a useful tool for high frequency prediction as it originally claimed. There is 

still wide scope to improve the predicted results especially at lower frequencies. The SEA 

predicting technique can also be proposed to study complex geometries of ducts like flat oval 

duct or circular duct where discretization could pose a great challenge.  
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Appendix A – MATLAB  
 

%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Duct Design 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Input Parameters 
fq = [63 125 250 500 1000 2000 4000 8000]; 
TL = zeros(length(fq), 1); 
Lw6 = zeros(length(fq), 1); 
W_c = zeros(length(fq), 1); 
n1 = zeros(length(fq), 1); 
P1 = 1;                                                      % power in watts 
c0 = 343;                                                    % wave speed 

  
for i = 1:length(fq) 

  
f = fq(i); 
omega = 2*pi*f;                                           % angular frequency 

  

  

  
% Cavity 1 (Subsystem 1) 
L1 = [0.305 0.610 6.1];                                                                 

% dimensions in meters 
 

S1 = 2*(L1(1)*L1(3)+L1(1)*L1(2)+L1(3)*L1(2));                                            

% total surface area 
 

V1 = prod(L1);                                                                           

% volume 
 

Le1 = 4*sum(L1);                                                                         

% total edge length 
 

Lv = 2*(L1(1)+L1(2));                                                                    

% c/s duct perimeter 

  

  
% Plate thickness [m] 
h = 0.701e-3; 

  
 

% Plate 1 (Subsystem 2) 
L2 = [0.305 6.1 h]; 
G = 21e10;                                          % elasticity 
mu = 0.3125;                                        % poissons ratio 
rho = 7800;                                         % density (kg/m^3) 
rhos = rho*L2(3);                                   % density x thickness 
S2 = L2(2)*L2(1);                                   % surface area 
Lp2 = 2*(L2(2)+L2(1));                              % perimeter 
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% Plate 2 (Subsystem 3) 
L3 = [0.610 6.1 h];      
S3 = L3(1)*L3(2);    
Lp3 = 2*(L3(1)+L3(2));                               

  

  
 

% Plate 3 (Subsystem 4) 
L4 = [0.305 6.1 h];      
S4 = L4(2)*L4(1);  
Lp4 = 2*(L4(2)+L4(1));                               

  

    
% Plate 4 (Subsystem 5) 
L5 = [0.610 6.1 h];      
S5 = L5(1)*L5(2);    
Lp5 = 2*(L5(1)+L5(2));                              

    

  
% Cavity 2 (Subsystem 6) 
L6 = [700 400 300];       
S6 = 2*(L6(1)*L6(2)+L6(1)*L6(3)+L6(2)*L6(3)); 
V6 = prod(L6);  
Le6 = 4*sum(L6);                                              % total length 

  

  

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% CACULATIONS  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
gamma1 = 1.8e-4*sqrt(f); 
eta11 = S1*c0*gamma1/(4*omega*V1);               % total loss factor of sub 1 

  

  
fc = sqrt(3*c0^4*rhos*(1-mu^2)/(pi^2*G*h^3));            % critical frequency                                                                                       
 

alpha = sqrt(f/fc); 

  
 if f > fc 
  sigma1 = (1-(fc/f))^(-1/2); 
  sigma2 = (1-(fc/f))^(-1/2); 

   
 elseif f == fc 
   sigma1 = 0.45*sqrt((Lp2*fc)/c0); 
   sigma2 = 0.45*sqrt((Lp3*fc)/c0); 

    
 else 
   sigma1 = (Lp2*c0/(4*pi^2*S2*fc))*(((1-alpha^2)*log((1+alpha)/(1-

alpha))+2*alpha)/(1-alpha^2)^(3/2));     
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   sigma2 = (Lp3*c0/(4*pi^2*S3*fc))*(((1-alpha^2)*log((1+alpha)/(1-

alpha))+2*alpha)/(1-alpha^2)^(3/2)); 

    
 end 

  
 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Coupling Loss Factors from the plate to cavity 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
rho0 = 1.21;                                             % density of the air   

  
if f >= fc 

     
    eta21 = rho0*c0*sigma1/(omega*rhos); 
    eta31 = rho0*c0*sigma2/(omega*rhos); 
    eta41 = rho0*c0*sigma1/(omega*rhos); 
    eta51 = rho0*c0*sigma2/(omega*rhos); 

     

     
else 
     eta21 = 2*rho0*c0*sigma1/(omega*rhos); 
     eta31 = 2*rho0*c0*sigma2/(omega*rhos); 
     eta41 = 2*rho0*c0*sigma1/(omega*rhos); 
     eta51 = 2*rho0*c0*sigma2/(omega*rhos); 

     

      
end 

  

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Dissipation Factors of the plates  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
eta22 = (0.7/f^0.9);                            % total loss factor for sub 2  
eta33 = (0.7/f^0.9);                            % total loss factor for sub 3  
eta44 = (0.7/f^0.9);                            % total loss factor for sub 4  
eta55 = (0.7/f^0.9);                            % total loss factor for sub 5  

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Lengths of connections 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
L23 = L2(2); 
L32 = L23; 
L34 = L3(2); 
L43 = L34; 
L45 = L4(2); 
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L54 = L45; 
L52 = L5(2); 
L25 = L52; 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Coupling Loss Factors between the plates 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
B = G*h^3/(12*(1-mu^2)); 

  
cB = (omega^2*B/rhos)^(1/4); 

  
eta23 = 0.2068*cB*L23/(omega*S2);            % CLF within the sub 2 and sub 3  
 

eta34 = 0.2068*cB*L34/(omega*S3);  
eta45 = 0.2068*cB*L45/(omega*S4);  
eta52 = 0.2068*cB*L52/(omega*S5);  

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% modal densities 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
n1(i) = (4*pi*f^2*V1/c0^3)+(pi*f*S1/(2*c0^2))+(Le1/(8*c0));                  

% modal density sub 1 

  
cL = (G/(rho*(1-mu^2)))^(1/2);                      % longitudinal wave speed  

  
n2 = sqrt(3)*S2/(cL*h);                     % modal densities of sub 2,3,4,5. 
n3 = sqrt(3)*S3/(cL*h); 
n4 = sqrt(3)*S4/(cL*h); 
n5 = sqrt(3)*S5/(cL*h); 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% coupling loss factors related to modal densities 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
eta12 = eta21*n2/n1(i); 
eta13 = eta31*n3/n1(i); 
eta14 = eta41*n4/n1(i); 
eta15 = eta51*n5/n1(i); 
eta32 = eta23*n2/n3;  
eta43 = eta34*n3/n4;  
eta54 = eta45*n4/n5;  
eta25 = eta52*n5/n2; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Total Loss factors 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
eta1 = eta11; 
eta2 = eta22+(eta21+eta23+eta25); 
eta3 = eta33+(eta31+eta32+eta34); 
eta4 = eta44+(eta41+eta43+eta45); 
eta5 = eta55+(eta51+eta52+eta54); 

  

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Transmission coefficients 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
R16 = 20*log10(f*rhos)-42;                            % Sound Reduction Index 

  
tau16 = 1/(10^(R16/20));                           % Transmission Coefficient 

  
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Non resonant Coupling Factor Cavity to Cavity 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
eta16 = 13.7*(S2+S3+S4+S5)*tau16/(f*V1); 

  

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Matrix Formation 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
eta = [eta1 -eta21 -eta31 -eta41 -eta51;  
       -eta12 eta2 -eta32 0 -eta52;  
       -eta13 -eta23 eta3 -eta43 0;  
       -eta14 0 -eta34 eta4 -eta54;  
       -eta15 -eta25 0 -eta45 eta5]; 

  

  
W = [P1/omega 0 0 0 0].'; 

  
E = eta\W; 

  
We = omega*eta1*E(1);        % sound power stored in the internal sound field 

  

  

  
m2 = rho*(L2(2)*L2(1)*L2(3));                            % mass of the plates 
m3 = rho*(L3(1)*L3(2)*L3(3)); 
m4 = rho*(L4(2)*L4(1)*L4(3)); 
m5 = rho*(L5(1)*L5(2)*L5(3)); 
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v2 = sqrt(E(2)/m2);                             % Average Vibration Velocity 
v3 = sqrt(E(3)/m3); 
v4 = sqrt(E(4)/m4);   
v5 = sqrt(E(5)/m5); 

  

  
 

Wr = rho0*c0*(S2*sigma1*v2^2 + S3*sigma2*v3^2 + S4*sigma1*v4^2 + 

S5*sigma2*v5^2);                                            % Resonant Power 
 

W_non = P1*tau16;                                        % Non-resonant Power                           
 

W_c(i) = Wr + W_non;           % Total sound power radiated from an enclosure                                                             

  

  
Lw6(i) = 10*log10(W_c(i)/10^-12);                  % Power Level out in Sub 6 

  
Lw1 = 10*log10(We/10^-12);                          % Power Level in the duct 

  
alpha = [1.31 0.66 0.33 0.16 0.16 0.16 0.16 0.16];         % duct attenuation 

  
gamma = 10^(-alpha(i)/10);                                             

  
EL = (gamma^L1(3)-1)/(log(gamma));                         % Effective Length 

  

  
ES = Lv*EL;                                          % Effective Surface Area 

  

                                                 
csa = L1(1)*L1(2);                      % cross sectional area inside of duct   

  

  
 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Calculating the Transmission Loss 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
TL(i) =(Lw1 - Lw6(i) + 10*log10(ES/csa)); 

  

  
w_t = 30*c0/(L1(1) + L1(2)); 

  
f_t = w_t/2/pi;                                        % transition frequency 
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if f > f_t 
      

    F = f*(L1(1) + L1(2))/(30*c0*2*pi); 

  
    TL(i) = TL(i) + 10*log10(2*pi*f*(L1(1) + L1(2))/30/c0);                  

 

% applying the correction factor 
  

  end 

  
end 
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